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A Unit-Load Approach for Reliability-Based Design
Optimization of Linear Structures under Random Loads and
Boundary Conditions
Robert James Haupin and Gene Jean-Win Hou *

Department of Mechanical and Aerospace Engineering, Old Dominion University, Norfolk, VA 23454, USA
* Correspondence: ghou@odu.edu

Abstract: The low order Taylor’s series expansion was employed in this study to estimate the
reliability indices of the failure criteria for reliability-based design optimization of a linear static
structure subjected to random loads and boundary conditions. By taking the advantage of the linear
superposition principle, only a few analyses of the structure subjected to unit-loads are needed
through the entire optimization process to produce acceptable results. Two structural examples are
presented in this study to illustrate the effectiveness of the proposed approach for reliability-based
design optimization: one deals with a truss structure subjected to random multiple point constraints,
and the other conducts shape design optimization of a plane stress problem subjected to random
point loads. Both examples were formulated and solved by the finite element method. The first
example used the penalty method to reformulate the multiple point constraints as external loads,
while the second example introduced an approach to propagate the uncertainty linearly from the
nodal displacement vector to the nodal von Mises stress vector. The final designs obtained from
the reliability-based design optimization were validated through Monte Carlo simulation. This
validation process was completed with only four unit-load analyses for the first example and two for
the second example.

Keywords: reliability index; unit-load method; multiple point constraint; random loads; random
boundary conditions

1. Introduction

Various uncertainties are inherent in engineering design processes with quantities
such as tolerancing, material and mechanical properties, applied loads, and environmental
conditions. To count these uncertainties in modeling and analysis, it is necessary to
produce results with high confidence. For this reason, stochastic finite element methods
have recently attracted attention in research and applications. Stochastic finite element
methods can be broadly divided into three categories: sampling methods, the spectral
stochastic finite element methods, and the perturbation finite element methods [1–4]. These
methods have been extended to robust design optimization, fatigue failure, and structural
health monitoring [5–11].

Sampling methods are non-inclusive, which include Monte Carlo simulation and
smart sampling techniques [12]. In particular, Georgioudakis et al. [9] applied smart sam-
pling techniques to compute the probability of fatigue failure caused by crack initiation
and propagation. Zheng et al. [10,11] proposed an adjustable hybrid resampling tech-
nique to effectively identify the critical area to place sensors to monitor the health of a
bridge structure.

On the other hand, the spectral and perturbation stochastic finite element methods
are inclusive. The first step in these methods is to expand the input random fields and
processes as a combination of random functions and deterministic base functions. The
Karhunen–Loeve expansion is an example of such a process, which decouples a random
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field or a random process with a known distribution into stochastic functions and spatial
or time-dependent functions [13–16].

In the spectral finite element method, the stochastic response function, which is a
function of random variables, is expanded as a linear combination of orthogonal base
functions of the random variables and the deterministic coefficients. The coefficients in
the function expansion are integrals of the stochastic response function and each of the
base functions. This integration can be time consuming, if the number of random vari-
ables involved in the problem increases. To alleviate this difficulty, polynomial dimension
decomposition is introduced to sequentially decompose the stochastic function into compo-
nent functions with an increasing number of random variables [6,17]. These component
functions can be further expended by the orthonormal functions with respect to the given
probability density function. The deterministic coefficients in the expanded component
functions are again evaluated through the weighted integration. However, the number of
required integrations in this case is much less than the original expansion process. Recently,
Song et al. [18] employed polynomial dimension decomposition directly to integrate the
coefficients in the function expansion. In this case, the polynomial dimension decompo-
sition was introduced to express the integrand in the integral in terms of the component
functions with an increasing number of random variables. In short, Rahman [16] applied
polynomial dimension decomposition directly to the original stochastic response function
while Song et al. [18] applied it to the product of the stochastic response function and
the orthonormal basis functions introduced in the original expansion. Both approaches
achieved the computational efficiency for problems with multiple variables compared with
the original expansion process. Kaintura et al. [17] offered the tensor reduction method
for further dimension reduction. The dimension decomposition method has been used to
support reliability-based design optimization [6].

Taylor’s series expansion in terms of random variables has been used for a while by
practicing engineers to set up the standard for design safety [19]. In the perturbation finite
element methods, Taylor’s series expansion is used to expand the finite element matrix
equation into a polynomial of random variables. The coefficients of this expansion are the
derivatives with respect to the random variables of any component in the matrix equation
including the stiffness matrix, the mass matrix, the displacement vector, and the force
vector. These derivatives are evaluated at the mean values of the random variables. The
perturbation finite element methods are relatively easier to implement than the spectral
finite element methods as the former can be conveniently extended to broad applications
such as vibration [20,21], heat transfer [22], and dynamic analysis [23].

Most applications of the perturbation stochastic finite element method (PSFEM) are
limited themselves up to second-order derivatives, which produce acceptable results for
cases with covariances of the random variables of less than 0.15. Kaminski [24] extended
PSFEM to include terms with an order of derivatives higher than two. As expected, more
accurate results were achieved. Wu et al. [25] replaced analytical derivatives in PSFEM by
finite differencing to ease the complexity in computation. Kaminski [26] presented high-
order Taylor’s series expansion of strain and stress in terms of random material properties.
However, the reported results of most of the stochastic finite element methods are nodal
displacement, natural frequency, and the critical number of cycles in fatigue analysis. Only
a very few studies have reported the nodal von Mises stresses as output. This could be
because the von Mises is a nonlinear function of random variables. The randomness of
the Young’s modulus and the Poisson’s ratio will further increase such nonlinearity [27].
Furthermore, the state of stresses in the h–p finite element method is discontinuous across
the boundary between a pair of adjacent elements. It is necessary to use a stress recovery
scheme to smooth the stress field globally in the whole domain to find the nodal von Mises
stress [14,28] or to smooth the stress field locally in the sub-element surrounding the node
of concern [29]. Rahman and Rao [30] did report the statistics of the state stresses at nodes
as the output, which was conducted by using the meshless finite element method.



Designs 2023, 7, 96 3 of 25

As previously mentioned, the input uncertainties of most of the works carried out
by stochastic finite element methods including both spectral and perturbation methods
are material properties and domain geometries. Only a few have dealt with loading and
the boundary conditions as input uncertainty [7,22]. Zhao et al. [7] conducted robust
topology optimization of a linear static structure under loading uncertainty. The random
loads in [7] were represented by a linear combination of the random amplitudes and their
associated deterministic load vectors. The random amplitudes alone could model the
uncertainties in both the magnitude and direction of the applied random load. The analysis
and sensitivity analysis of the matrix state equation in the paper were then computed as a
combination of the linear structural analyses, each of which was subjected to one of the
deterministic load vectors. The objective and the constraint functions in the optimization
formulation [7] were expressed in terms of the second-order and the fourth-order products
of random variables. Their means and variances of products of random variables were
evaluated by Monte Carlo simulation, which does not involve any structural analysis. Xiu
and Karniadakis [22] applied both spectral and perturbation finite element methods to
study the solution statistics of the viscous Burgers’ equation subjected to uncertainty in
the boundary conditions. They concluded that the perturbation finite element method was
unable to produce an accurate solution with large variations.

The goal of this study was to conduct reliability index-based design optimization
of a linear elastic structure subjected to random loads and boundary conditions. The
constraints of concern were formulated in terms of the associated reliability indices. In most
reliability design optimization, the constraint reliability indices are calculated based upon
the reliability index approach or performance measurement approach [31–34]. However,
in this study, the reliability indices were directly formulated in terms of the associated
means and standard deviations, which were computed based upon the low-order Taylor’s
series expansion. A unit-load approach was employed in this study throughout the entire
design optimization process to achieve computational efficiency by taking advantage of the
linear nature of the structure. The unit-load approach referred to in this study, with a given
stiffness matrix K, conducted all related analyses with the unit-load equation, KUi = Ii,
where the load vector Ii is all zero except for its ith component, which was set as 1.

The Materials and Methods section presents a detailed process to formulate a reliability-
based design optimization problem, which includes a general finite element equation for a
linear static structure subjected to random load and multipoint boundary conditions, and
one-side and interval probabilities to model the uncertainties associated with the equality
and inequality constraints. The constraint equations of concern comprised the nodal dis-
placement vector, the nodal reactions, and the nodal von Mises stresses. Among these three
responses, the nodal displacement vector is the direct solution of the finite element equa-
tion, which leads to the computation of the nodal reaction and nodal von Mises stresses.
The first- and second-order derivatives of nodal displacements, reactions, and von Mises
stresses with respect to random loads and boundary conditions are also presented in this
section, which are required to compute the reliability indices of the concerned constraints
through Taylor’s series expansion.

The Results section presents two examples to demonstrate the use of the means and
standard deviations, which were approximated by Taylor’s series expansion, to compute
the reliability indices of the constraints for reliability-based design optimization. The means
and standard deviations of the constraints calculated in these examples were validated
with those obtained by Monte Carlo simulation. The final optimization solutions of the
reliability-based design examples were also be validated by Monte Carlo simulation. Our
concluding remarks are summarized in the final section of the discussion.

The first example was to minimize the weight of a two-bar truss structure while al-
lowing the randomness of the nodal displacement at the free end to fall into an allowable
bound. Besides two standard single point constraints, the state equation of the truss ex-
ample was subjected to two multiple-point constraints. The coefficients of the multiple
point constraints were set to be random. The design problem had six design variables in
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total, which were all deterministic. Two of the six design variables were related to the
cross-sectional areas of the truss members and the rest were the standard deviations of
four random variables related to the coefficients of two multiple point constraints. These
standard deviations were treated as the design variables to control the level of the ran-
domness of the design. The penalty method was applied here to explicitly incorporate the
multiple-point constraints into the state equation of the free truss structure. The augmented
state equation is now equipped with a random stiffness matrix and a random external force,
which can be solved by four unit-load solutions for a given set of design variables.

The second example aimed to find the best shape and location of a rectangular cutoff
at the base of a mooring bracket to minimize the weight. The mooring bracket was modeled
by a plane stress problem subjected to a point load described by two random variables.
The domain of the problem was discretized into four-node quadrilateral elements. The
constraint set was made of nodal displacements, reactions, and von Mises stresses. It
should be noted that the nodal displacements and reactions were the direct output of
the state equation, but not the nodal von Mises stresses. Moreover, the nodal von Mises
stresses were nonlinear in terms of the nodal displacements. Traditionally, the latter are
computed in three steps in the finite element methods. The first step is to compute the
state of the stresses at the interior integration points within each element in terms of the
nodal displacements of the selected element. The von Mises stresses at the same integration
points can then be computed in the second step within each element. In the third step, a
global stress recovery scheme is introduced to extrapolate the von Mises stresses from the
integration points within each element to the nodal points of the entire domain. In this
study, the sequence of the last two steps was switched to extend the linearity of uncertainty
propagation from the state of stresses at the integration points within each element to nodal
points of the entire domain. The latter could then be used to compute the von Mises stresses
at the nodal points directly.

In summary, the unit-load approach is the key element in this study, which enables
the reliability indices of any performance function to be computed efficiently. The first
example used the penalty method to convert the random multiple boundary conditions
imposed upon the truss structure to the random load. This conversion allows the reliability
index of any response function of the given truss structure to be computed by the unit-load
approach. The second example applied a new approach to propagate the uncertainty
smoothly from the nodal displacements that resulted from the unit-load analysis to the
nodal von Mises, which is a nonlinear function of nodal displacements. Both examples
demonstrated the computational efficiency of using the unit-load approach for reliability-
based design optimization.

2. Materials and Methods

A 3-step formulation process is presented in this section to propagate the uncertainties
in the loads and boundary conditions from the finite element state equation to the reliability-
based design optimization problem. Each step is described sequentially as a subsection as
follows. The first step is to use the penalty method to construct a state equation that includes
the randomness explicitly as part of the equation. The second subsection focuses on finding
the first- and second-order derivatives of the structural responses with respect to the input
random variables. These derivatives enable the use of the Taylor’s series expansion to
estimate the means and standard deviations of the response functions of concern. These
estimated means and standard deviations can then be directly applied to calculate the
reliability indices of the response constraints. With the availability of these reliability
indices, the third subsection builds a design optimization problem with uncertainty.

2.1. Linear Static Equation with Random Loads and Boundary Conditions

The static finite element equation of a free structure is represented as

Kq = f (1)
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where the n× 1 vectors, f and q, are the global force and the displacement, respectively,
while K is the n× n global stiffness matrix, which is non-invertible at this moment. To
ensure that it produces a unique solution, Equation (1) must include proper boundary
conditions. The finite element equation is then modified as

Kq = f + R (2)

where the boundary reaction force, R, is installed to enforce the boundary conditions upon
the involved boundary degrees of freedom, qB. Two types of linear boundary conditions,
called the single point constraint and the multiple point constraint, are commonly consid-
ered in finite element analysis. Assume that the kth boundary conditions in analysis, Ck,
is a typical linear, two-point constraint that involves two degrees of freedom, qkp and qkp,
which can be expressed as

Ck = βkpqkp + βkqqkq − βk0 = 0 (3)

where the user-provided constants βkp, βkq, and βk0 are treated as random variables in this
study. A single point constraint is a special case of a multi-point constraint, Equation (3),
in which the coefficient, qkp, can be set to zero. Note that this multi-point constraint in
Equation (3) can be put in a vector form as

Ck = vT
k q− βk0 = 0 (4)

where vk is a n× 1 vector with two non-zero values, βkq and βkq, located respectively at
the degrees of freedom, p and q. Equation (4) can be extended to count for all boundary
constraints in the analysis as

C = VTq− β0 = 0 (5)

where C is an m × 1 vector and V is a n × m matrix with m being the total number of
constraints. Note that the kth column of V is the vector, vk, in Equation (4), with two
non-zero coefficients, βkp and βkq.

The penalty method can be used to solve Equation (1) constrained by Equation (5).
This is carried out by introducing a large penalty coefficient, µ, to transfer Equation (1) into
a new form (

K + µVVT
)

q = f + µVβ0 (6)

Comparing Equation (6) with Equation (2), the boundary condition of Equation (5)
has now been included as part of the forcing term. Specifically, the reaction force, R, in
Equation (2) can now be identified as

R = −µVC = −µV
(

VTq− β0

)
= −µVVTq + µVβ0 (7)

The reaction force in this case enforces the constrained degrees of freedom to satisfy
the required multiple point constraint, Equation (6). Note that the penalty method does not
produce a perfect solution that fully accomplishes C = 0. However, the error in C in the
penalty method facilitates the calculation of the reaction force.

As for computing the nodal von Mises stresses, it is not as straight forward as comput-
ing the nodal displacements and reactions. This is because the stresses are not continuous
across the elements in the finite element method. In a deterministic finite element analysis
process, the nodal von Mises stresses are computed in three steps. In the first step, the
state of the stresses is computed at the interior integration points within an element. Once
the state of the stresses becomes available, the von Mises stress at the same location can
be calculated. This is followed by the use of a smoothing method to obtain the nodal
von Mises stresses by curve-fitting the von Mises stresses calculated at the interior points
throughout the entire domain.
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Specifically, the state of the stresses at every location in an element can be calculated
based upon the known nodal displacement field q. For example, one can relate the state of
the stresses of a plane stress problem at an interior integration point i to the displacement
field in a specified finite element, e, as

σe =


σx
σy
τxy

 = DB(ξi, ηi)qe (8)

where matrix D is a function of the material properties and matrix B is composed of the
derivatives of shape function evaluated at (ξi, ηi), the natural coordinates of the location
of the interior integration point i [35]. Note that the natural coordinates, (ξ, η), are non-
dimensional and are independent of the shape of a finite element. Once the state of the
stresses at the integration points becomes available, the von Mises stress can be calculated
at the same interior integration point as

σ2
VMe = σ2

x − σxσy + σ2
y + 3τ2

xy = σT
e Aσe (9)

where the symmetric matrix A is given by

A =

 1 −1/2 0
−1/2 1 0

0 0 3


This is followed by employing a smoothing process to map the von Mises from the

interior integration points to the elemental nodal points. The least-squares fit method
suggested by Chandrupatla and Belegundu [35] was employed in this study for smoothing.
Like the displacement field in an element, the von Mises stress field in an individual
element is also approximated by a linear combination of shape functions and nodal von
Mises stresses, Σe, as

σVMe(ξ, η) = NT
e (ξ, η)Σe (10)

The best-fitting nodal von Mises stresses are those that minimize the difference, col-
lected through the whole domain, between the von Mises stresses evaluated at the given
interior integration points and those evaluated by the approximation, Equation (10). The
process results in a matrix equation,

MΣ = σVM (11)

where the vector, Σ, is unknown, which is the collection of the von Mises stresses at the
nodal points, the vector σVM is known, which are those computed at the interior integration
points, and the matrix M, is the assembly of element shape functions evaluated at the
interior integration points over the whole domain as

M = ∑
e

Ne(ξi, ηi)NT
e (ξi, ηi)

Note that the matrix, M, is independent of the element shape or element material
properties for an iso-parametric element.

Once the input load vector, f, and the boundary conditions, C = 0, are considered
random, the output structural responses in the finite element analysis, the nodal displace-
ments, reactions, and von Mises stresses will also become random. The challenge now
is to quantify the uncertainties of these output responses with measurable terms. To this
end, the low-order Taylor’s series expansion is employed to approximate the mean and the
variance of any response function, g(xi), for a given set of random variables, {xi}, as

E(g) = µg ≈ g(µx1 , µx2 , . . . , µxn) +
1
2∑n

i=1

(
g′′,xi sxi

2
)

(12)
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Var(g) = s2
g = ∑n

i=1

(
g′,xi

sxi

)2
(13)

where µxi and sxi are the mean and the standard deviation of a random variable xi and
g′,xi

and g′′,xi are the first- and the second-order derivatives of the function, g(xi). The
latter are all evaluated at means, µxi . Assume that the random variables are statistically
independent to each other, and that the response functions have sufficient regularity. The
above approximations provide acceptable accuracy for a covariance of less than 0.15.

To take advantage of Equations (12) and (13), it is necessary to develop a method that
can efficiently evaluate the first- and second-order derivatives of the response functions
resulting from the finite element analysis. Specifically, in this study, we needed to compute
the first- and second-order derivatives of the structural responses, nodal displacements,
reactions, and von Mises stresses with respect to the random variables in f, V, and β0.
The following subsection demonstrates that these derivatives can be found with a few
unit-load solutions. Note that it is straight forward to derive different orders of derivatives
of the nodal displacements and reactions, but not the nodal von Mises stresses, as the latter
involves additional uncertainty propagation.

2.2. Derivatives with Respect to Random Loads and Boundary Conditions

This section provides a detailed derivation to find the high-order derivatives of the
state equation and its output of a linear structure with respect to the random external forces
and the random multiple point constraints. Note that the solution q of the state equation,
Equation (6), is linear in terms of the load vector, f and β0. Therefore, the order of the
derivatives of Equation (6) higher than one with respect to any component in f and β0 will
be zero. However, deriving the design derivatives of Equation (6) with respect to the rest
of coefficients, βkp and βkq, in the kth multipoint constraint will be more involved. This
is because matrix V on the right of Equation (6) and VVT on the left are the linear and
nonlinear functions of βkp and βkq, respectively. Consequently, the displacement q is now
nonlinear in βkp and βkq.

To start the derivation, set the vector Ui, being the solution of the linear structure
under the unit-load, Ii, as (

K + µVVT
)

Ui = Ii (14)

where the subscript i specifically denotes the non-zero degree of freedom, the vector, Ii,
has only one non-zero value of 1 at the ith component, and V defined in Equation (5) is
a function of βkp and βkq. Note that Ui is in fact the derivative of q with respect to the ith
component of the external force vector fi. That is, Ui = q′, f i

. For simplicity, the solutions
of the finite element matrix equation of Equation (14) due to any unit-load imposed at
different degrees of freedom such as Ui, Ukp, or Ukq will be referred to as a unit-load
displacement in the rest of this paper.

One can now differentiate Equation (6) with respect to βk0, a variable on the right-hand
side of the kth constraint, to obtain(

K + µVVT
)

q′,βk0
= µvk = µβkpIkp + µβkqIkq

or
q′,βk0

= µβkpUkp + µβkqUkq (15)

where Ukp is the solution to Equation (14) with a unit-load placed at the degree of freedom,
kp, while Ukq is associated with a unit-load at the degree of freedom, kq.

The next step is to differentiate Equation (6) with respect to random coefficients in the
constraint equation, βkp and βkq. For simplicity, only βkp is considered as an independent
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variable in the following derivation. The first-order derivative of Equation (6) is now
obtained as (

K + µVVT
)

q′,βkp
= −µ

(
VVT

)′
,βkq

q + µ(Vβ0)
′
,βkq

(16)

where the matrix product of the vector, V, which is a collection of vk, defined in Equation (4)

VVT = ∑m
k=1

(
vkvT

k

)
and the first- and second-order terms on the right-side of Equation (16) can be expressed in
detail as follows:(

VVT
)′

,βkq
q =

(
v′k,βkp

vT
k + vkv′T,βkp

)
q =

[
−
(

2βkpqkp + βkqqkq

)]
Ikp − βkqqkpIkq

and
(Vβ0)

′
,βkq

= βk0Ikp

With the help of the above equations, Equation (16) can be reorganized as(
K + µVVT

)
q′,βkp

= µ
[
−
(

2βkpqkp + βkqqkq

)
+ βk0

]
Ikp − µβkqqkpIkq (17)

The solution of the above equation, which is the first-order displacement derivative with
respect to βkp, is now obtained as a linear combination of two unit-load solutions as

q′,βkp
= µ

[
−
(

2βkpqkp + βkqqkq

)
+ βk0

]
Ukp − µβkqqkpUkq (18)

The second-order displacement derivative with respect to βkp can be carried out
in a similar matter, which again yields a linear combination of the same two unit-load
solutions as

q′′,βkp
= −2µ

(
2βkpq′kp,βkp

+ βkqq′kq,βkp
+ qkp

)
Ukp − 2µβkqq′kp,βkp

Ukq (19)

The same process can be further extended to obtain the higher-order derivatives of
q as

q(n),βkp
= −nµ

(
2βkpq(n−1)

kp,βkp
+ βkqq(n−1)

kq,βkp
+ (n− 1)q(n−2)

kp,βkp

)
Ukp − nµβkqq(n−1)

kp,βkp
Ukq (20)

where the order of differentiation, n, is higher than 2. In short, the derivatives of the
displacement vector with respect to βkq in different orders can be obtained in terms of two
unit-load displacements, Ukp and Ukq.

Next, the derivatives of the reaction force vector, R, can be found by directly differenti-
ating Equation (7). For example, the derivative of R with respect to a force component, fi,
will be linear in q′, f i

as

R′, f i
= −µVVTq′, f i

= −µVVTUi

while the derivative of R with respect to βk0 is found to be

R′,βk0
= −µVVTq′,βk0

+ µvk

The derivatives of R with respect to the coefficients of the constraint, βkp and βkq, can
also be found by the direct differentiation of Equation (7). Again, for illustration, one may
select βkp as an independent variable to obtain the following relations,

R′,βkp
= µ

[
−
(

2βkpqkp + βkqqkq

)
+ βk0

]
Ikp − µβkqqkpIkq − µVVTq′,βkp

(21)
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and

R′′,βkp
= −2µ

(
2βkpq′kp,βkp

+ βkqq′kq,βkp
+ qkp

)
Ikp − 2µβkqq′kp,βkp

Ikq − µVVTq′′,βkp
(22)

Furthermore, the high-order derivatives of the reaction force can also be found as

R(n)
,βkp

= −nµ

(
2βkpq(n−1)

kp,βkp
+ βkqq(n−1)

kq,βkp
+ (n− 1)q(n−2)

kp,βkp

)
Ikp − nµβkqq(n−1)

kp,βkp
Ikq − µVVTq(n),βkp

(23)

Note that the first two coefficients of Ikp and Ikq on the right-hand side of R′,βkp
are

the same as those of Ukp and Ukq of q′,βkp
in Equation (18). The same similarity was also

observed between R′′,βkp
and q′′,βkp

in Equation (19) and their higher-order derivatives.

In summary, the nth derivatives of the displacement vector with respect to either
βkp or βkq as the independent variable can be briefly expressed as, based upon
Equations (18)–(20),

q(n),βkp
= anUkp + bnUkq (24)

where Ukp and Ukq are the unit-load solutions of Equation (14), and an and bn are scalar

functions of random variables, βkp or βkq, and the lower-order derivatives, q(n−1)
,βkp

, and

q(n−2)
,βkp

, which should be available at the time when q(n),βkp
is computed. The derivatives of

the constraint reaction force vector can also be expanded in terms of Ikp and Ikq in a similar
matter. Specifically, one has the following relation,

R(n)
,βkp

= anIkp + bnIkq − µVVTq(n),βkp
(25)

Once the displacement field is treated as random, its randomness will be propagated
to the von Mises stresses at the interior integration points first by Equation (9), and then
to the nodal points through the smoothing process of Equation (11). In the deterministic
environment, the von Mises stresses are usually calculated first at the interior points in
each element, based upon Equation (9). These are then collected through the entire domain
and mapped to the nodal points based upon Equation (11). To take advantage of the linear
nature of the unit-load approach, the original sequence to calculate the nodal von Mises
stresses was reversed in this study. The state of the stresses and its derivatives are first
calculated as before at the interior integration points,

σ
(n)
e,βkp

=


σ
(n)
x,βkp

σ
(n)
y,βkp

σ
(n)
xy,βkp

 = DBq(n)e,βkp
= anDBUe,kp + bnDBUe,kq

where σ
(n)
e,βkp

consists of three components of the stresses at an interior point in an element.

Each of the stress components is then collected and mapped separately to the nodes in the
structural by using Equation (9). As an example, one can assemble a vector, σ

(n)
xe,βkp

, which

collects all axial stresses σ
(n)
x,βkp

reported at the interior points. The value of the axial stress

σ
(n)
x,βkp

can be recast as

σ
(n)
x,βkp

= anD1BUe,kp + bnD1BUe,kq (26)
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where D1 is the first row of D. It is noted that the stress, σ
(n)
x,βkp

, is a linear combination of

unit-loads. Thus, the smoothing process can be conducted separately to map σ
(n)
xe,βkp

from

interior points to nodes as
S(n)

x,βkp
= anS(n)

x,kp + bnS(n)
x,kq

where MS(n)
x,kp = D1BUkp and MS(n)

x,kq = D1BUkq are solved for the states of the stresses
at the nodal points produced by the unit-loads, Ukp and Ukq, respectively. The M matrix
described here is the same one described in Equation (11). The same process can be
extended to find the normal stress S(n)

y,βkp
and shear stress T(n)

xy,βkp
. As a result, the nth order

derivatives of the state of the stresses at a nodal point, S(n)
,βkp

, can now be expressed as a

linear combination of the nth-order derivatives of the nodal state of the stresses produced
by the unit-0loads, respectively, as

S(n)
,βkp

=


S(n)

x,βkp

S(n)
y,βkp

T(n)
xy,βkp

 = anS(n)
kp + bnS(n)

kq (27)

It should be noted that the above equations are derived based upon the assumption
that the random variable of concern, βkp, is associated with only one constraint, Ck = 0. The
same derivation process can be further extended to the cases where the random variables of
concern involve more than one constraint. Example 1 in the Results section demonstrates a
case when a random variable is involved in two multipoint constraints.

Once the derivatives of all stress components at the nodes become available, one can
use Equations (12) and (13) to find the mean and standard deviation of the nodal von
Mises stresses. As an example, set βkp as a random variable with the mean and standard
deviation, µβkp and σβkp . The first- and second-order derivatives of the von Mises stress at
the nodal point of concern can now be calculated by differentiating Equation (9) at each
nodal point as

σ′VM,βkp
=

1
σVM

(
ST AS′,βkp

)
(28)

and

σ
′′
VM =

1
σVM

(
S′T,βkp

AS′,βkp
+ ST AS′′,βkp

)
− 1

(σVM)3

(
ST AS′,βkp

)2
(29)

where σVM in Equations (28) and (29) is the nodal von Mises stresses node of concern, and
S′,βkp

and S′′,βkp
are the first- and second-order derivatives of nodal state of stresses as defined

in Equations (22) and (23) with n = 1 and n = 2, respectively. All terms in the right-hand
sides of Equations (28) and (29) are evaluated at the mean of the random variable, µβkp .
Once the first- and the second-order derivatives of the nodal von Mises stress become
available, one can use Equations (12) and (13) to compute its mean and standard deviation.

In summary, it has been demonstrated in this subsection that only a few unit-load
solutions are required to compute any order of derivatives of the nodal displacements,
reactions, and von Mises stresses with respect to the random point loads and boundary
conditions. As a result, the unit-load approach benefits the use of the Taylor series expansion
to efficiently calculate the means and standard deviations of any nodal response function.
Such benefits can be further extended to conduct reliability-based design optimization
in which the design gradients of the reliability indices can be obtained analytically by
differentiating the few unit-load solutions.

The next subsection will elaborate on the design optimization formulation for the
reliability-based design of a linear structure subjected to random loads and boundary
conditions, and on the design gradient computation by directly differentiating the unit-load
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solutions. This is followed by Section 3, which presents two examples to demonstrate the
processes in the reliability analysis, design sensitivity analysis, and design optimization.

2.3. Reliability-Based Design Optimization with Random Loads and Boundary Conditions

Reliability-based design optimization has been widely accepted as a method that
balances the optimal designs with the confidence of probabilistic design constraints. The
method incorporates statistical measures into design constraints by developing reliability
indices to quantify uncertainties in terms of the levels of reliability.

An optimum design problem aims to identify the best set of design variables, b, that
can minimize the objective, f, and satisfy the given and inequality constraints, gi ≤ 0, and
equality ones, hj = 0. Specifically, the mathematical expression of a generalized optimum
design problem can be stated in a deterministic form as follows,

min
b ∈ Rk f (b)

subjected to : gi(b, q) ≤ 0, i = 1, 2, . . . m

hj(b, q) = 0, j = 1, 2, . . . n

bL ≤ b ≤ bU ,

(P1)

In most engineering design problems, the constraints usually involve limits on nodal
displacements, nodal stresses, and nodal reactions. These limiting factors are assigned
to guard against the failure of a structure to sustain applied loads. In this study, the
applied loads and the boundary conditions were treated as random. Their uncertainty
will propagate through the structure to its stress, deflection, and reaction, which make
up the constraint equations defined in Problem (P1). Therefore, both the equality and
inequality constraints stated in Problem (P1) must incorporate these uncertainties with
measurable terms. For instance, the success of a design against a stress inequality constraint
at a given node i, gi = σVMi − σyd ≤ 0, must now be measured by a targeted level of failure
probability, P f0

Pgi ≡ P(gi ≥ 0) ≤ Pg0 i = 1, 2, . . . nd (30)

where nd is the total number of element nodes, and σyd and σVMi represent the yield stress
and the von Mises stress, respectively. The probability failure of the stress constraint, Pgi ,
can also be stated by a complementary term, called reliability,

Rgi = 1− Pgi
, i = 1, 2, . . . nd

If the randomness follows the normal distribution, the above reliability can be calcu-
lated by the CDF of a single variable, called the reliability index, βgi , as

Rgi = Φ
(

βgi

)
which is a ratio between the mean and the standard deviation of all possible values of gi.
That is,

βgi =
µgi

sgi

=
µVMi − µyd√

s2
VMi

+ s2
yd

The inequality constraint, Equation (26), can then be recast as a single value constraint
of the reliability indices,

βg0 − βgi
≤ 0 i = 1, 2, . . . nd

where the value of the reliability index, βg0 , is associated with the targeted reliability,

βg0 = Φ−1(1− Pg0

)
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As for the equality constraints in Problem (P1), its uncertainty can be controlled by
imposing tolerances. For example, one can require the constraint, hj = 0, fall into a range
of a specified bilateral tolerance, τhj

, with a pre-determined probability, Phj
as

P
(
−τhj

≤ hj ≤ τhj

)
≥ Phj

(31)

ssuming that the distribution is normal, one may set the mean value of the constraint
as zero, µhj

= 0, and the standard deviation of stdhj
as follows, based upon the required

tolerance, τhj
and the probability, Phj

, as

stdhj
=

τhj

βPhj
/2

(32)

where the reliability index, βPhj
/2, is determined based upon the specified probability, Phj

,
as

βPhj
/2 = Φ−1

(
1−

1− Phj

2

)
(33)

For instance, the constraint that falls into the range −0.02 ≤ hj ≤ 0.02 with 99.73%
probability can be replaced by a pair of constraints. One is an equality constraint on its
mean and the other is an inequality constraint on its standard deviation as{

µhj
= 0

stdhj
≤ 0.0067

(34)

Note that in this case, βPhj
/2 = 3 or hj = 0 ± 0.02, follows the format of natural

tolerance.
In summary, with specified probabilities of failure, the deterministic Problem (P1) can

now be reformulated in terms of reliability indices as

min
b ∈ Rk f (b)

subjected to : βg0 − βgi

(
µgi ,sgi ,

)
≤ 0, i = 1, 2, . . . m

µhj
= 0,

stdhj
≤

τhj
βPhj

/2
, j = 1, 2, . . . n

bL ≤ b ≤ bU ,

(P2)

All variables in Problem (P2) are deterministic including the means and the standard
deviations of the input random variables and the constraints. The latter can be calculated
based upon Equations (12) and (13). It is worthwhile mentioning that the magnitude of
the mean value calculated by Equation (12) is most likely dominated by the first term,
and not the second term as the former is a function of the mean values while the second
term is the sum of the square terms of the standard deviations. On the other hand, the
magnitude of the standard deviations, as indicated in Equation (13), is a sum of the square
terms of the standard deviations. Thus, from a designer point of view, it will be more
effective to accomplish the constraints on the mean values such as, µhj

= 0 by changing
the mean values of the design variables, while it will be more effective to change the
standard deviations to accomplish the constraints on reliability such as stdhj

≤ 0.0067 in
Equation (32). In Section 3, Example 1 will take into consideration the standard deviations
of the random variables as design variables to satisfy the standard deviation requirements.

To effectively support gradient-based design optimization, it is preferable to have the
first-order design sensitivity, with respect to the design variables, computed efficiently for
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response functions involved in the design consideration. In a structural reliability-based
design optimization problem, the probability of failure involves the means and the standard
deviations of the nodal displacement, reaction forces, and von Mises stresses. The design
derivatives of these means and standard deviations with respect to the structural design
variables can be calculated based upon Equations (12) and (13). These design variables can
be either random or deterministic.

Set b` as a deterministic variable that is related to the material properties and dimen-
sions of the structure of concern. The design derivatives of the mean and the standard
deviation of a response function, g(xi), are then obtained as

dµg

db`
≈ dg(µx1 , µx2 , . . . , µxn)

db`
+

1
2∑n

i=1

(
dg′′,xi

db`
sxi

2

)
(35)

dSg

db`
=

∑n
i=1

(
dg′,xi
db`

sxi

)2

2Sg
(36)

As presented in Section 2.2, the response functions, g(xi), which include the nodal
displacements, reactions, and von Mises stresses of a linear structure, and their derivatives,
g′,xi

and g′′,xi , evaluated at the means, can be recursively expressed as a linear combination
of the unit-load solutions, denoted by Ukp and Ukq. Therefore, their first-order design
derivatives can be obtained as a linear combination of the design derivatives of these
unit-load solutions. This is also be conducted by directly differentiating Equation (14) as

(
K + µVVT

)dUi
db`

= − dK
db`

Ui − µ

[
dV
db`

(
VTUi

)
+ V

dVT

db`
Ui

]
Note that the mean value of any random variable, say xk, can be selected as a design

variable (i.e., µxk
∼= b`

)
. Since function g and its derivatives, g′,xi

and g′′,xi , in Equations
(35) and (36), are all evaluated at the means of the random variables, one can follow the
standard procedure to differentiate g, g′,xi

, and g′′,xi with respect to µxk , as per Equations (35)
and (36) with respect to b`. In the case where the standard deviation of any random variable,
Sxk , is treated as a design variable, Equations (35) and (36) can now be simplified as

dµg

dSxk

=g′′,xk sxi (37)

and
dSg

dSxk

=
g′,xk

2sxk

Sg
(38)

This is again because g, g′,xi
, and g′′,xi are evaluated at the means of all random variables,

and consequently, they are independent of the standard deviations.

3. Results

Two examples of RBDO are presented in this section to demonstrate the use of the
unit-load solutions in Taylor’s series expansion to estimate the means and the standard
deviations of the response functions computed by the finite element method. The first
example was a truss problem subjected to random multipoint constraints. It incorporates
an equality constraint and includes standard deviations of random variables as design vari-
ables. The second example conducted shape optimization of a mooring bracket subjected
to two random point loads. The bracket was modeled as a plane stress problem, which
was discretized with quadrilateral elements. The unit-load approach presented in Section 2
was employed here to compute the constraints, which were formulated in terms of the
reliability indices of the nodal displacements, reactions, and von Mises stresses. Monte
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Carlo simulation was used later to validate the results of the Taylor series expansion and
the reliability-based design optimization.

3.1. Example 1–Random Multipoint Constraints

A horizontal rigid bar with length `3 was hinged at the left end and subjected to a
vertical point load P at the free end, as shown in Figure 1. The problem was taken from [35].
The bar was supported by two vertical truss bars, Bar 1 and Bar 2. They had the same
lengths, while their Young’s modulus and cross-sectional area were not the same. The
length denoted by L was set as 36 inches. The Young’s modulus and the cross-sectional area
of Bar 1, E1, and A1 were set as 30× 106 psi and 1 in2, and those of Bar 2, E2 and A2, were
set as 10× 106 psi and 1.25 in2, respectively. The distances from the hinge point to Bar 1 and
to Bar 2 are denoted by `1 and `2, respectively. The lengths, `1, `2, `3, and the point load P
were considered as normal random variables in this study. With the initial covariances being
0.15, they can be given by `1 ∼ N(15, 2.25), `2 ∼ N(27, 4.05), `3 ∼ N(36, 5.40), and
P ∼ N(15, 000, 2250). The goal of this design optimization exercise was to find the lightest
design that can control the deflection at the free end of the rigid bar be in the range of
0.448 ≤ δmax ≤ 0.452, with 99.73% of probability. To this end, the cross-sectional areas of the
vertical bars, A1, A2, as well as the standard deviations of `1, `2, and `3 were considered as
the design variables. The solution of this design problem is presented in three sub-sections.
The problem statement for deterministic design optimization is stated in Section 3.1.1,
which involved only one equality constraint. The second section, Section 3.1.2, uses the
second-order Taylor’s series expansion to compute the mean and standard deviations of
the nodal displacements and reactions. The last section, Section 3.1.3, presents the results
of several reliability-based design optimization runs with different levels of reliability of
constraint satisfaction.
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3.1.1. Deterministic Finite Element State Equation

The global stiffness and the external load vector of the two-member truss structure are
stated as

K0 =


s1 0
0 s2
−s1 0

−s1 0 0
0 −s2 0
s1 0 0

0 −s2
0 0

0 s2 0
0 0 0

 and f0 =


0
0
0
0
P
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where the initial values of s1 and s2 are given by s1 = E1 A1
L = 0.833× 105, s2 = E2 A2

L =
0.347 × 105, and the point load P is taken at its mean, P = 15 × 103. The problem is
subjected to two single point constraints at Nodes 3 and 4,

q3 = q4 = 0

and two multiple point constraints

`3q1 − `1q5 = 0`3q2 − `2q5 = 0

The above multipoint constraints are imposed to ensure that Nodes 1, 2, and 5 maintain
a straight line, even after truss deformation to comply with the rigidness assumption of the
horizontal bar.

One may implement the single point constraints first by eliminating rows and columns
3 and 4 to obtain the revised K and f as

K =

s1 0 0
0 s2 0
0 0 0

 and f =


0
0
P


Next, one can implement the multipoint constraints by the penalty method. This leads

to a set of three equations as (
K + µv1vT

1 + µv2vT
2

)
q = f (39)

where v1 and v2 are the coefficients of the given multiple point constraints; vT
1 = (`3, 0, `1)

and vT
2 = (0, `3, `2). More specifically, Equation (39) is detailed as follows for a unique

solution of qT = (q1, q2, q5)s1 + µ`2
3 0 −µ`1`3

0 s2 + µ`2
3 −µ`2`3

−µ`1`3 −µ`2`3 µ
(
`2

1 + `2
2
)


q1
q2
q5

 =


0
0
P


along with the reaction force vector at Nodes 1, 2, and 5,

R = µ


`2

3q1 − `1`3q5
`2

3q2 − `2`3q5
−`1`3q1 − `2`3q2 +

(
`2

1 + `2
2
)
q5

 (40)

3.1.2. Means and Standard Deviations of Displacement and Reactions

The means and standard deviations of the nodal displacement vector, qT = (q1, q2, q5),
can be calculated based upon Equations (12) and (13), resulting from the Taylor’s series
expansion, as

µq = q +
1
2

[
q′′,`1

σ2
`1
+ q′′,`2

σ2
`2
+ q′′,`3

σ2
`3
+q′′,Pσ2

P

]
(41)

and
Var(q)= σ2

q =
(

q′,`1
σ`1

)2
+
(

q′,`2
σ`2

)2
+
(

q′,`3
σ`3

)2
+
(

q′,PσP

)2
(42)

where µq and σq are the mean and standard deviation vectors of q, and q denotes the
displacement solution of Equation (39) with all random variables evaluated at their means.

The next task is to derive the first- and second-order derivatives presented in
Equations (41) and (42) and evaluate them at the means of random variables. The first- and
the second-order derivatives of the displacement vector with respect to the load force, P, is
straight forward as

q′,P = U5
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and
q′′,P = 0

where U5 is the unit-load displacement vector at Node 5. The first- and second-order
derivatives of the displacement vector with respect to the random variables, `1 and `2, can
be directly derived by using Equations (18) and (19), as they appear only in one of the
constraint equations. The resultant equations are listed below

q′,`1
= −µ(2`1q5 − `3q1)U5 + µ`3q5U1

q′,`2
= −µ(2`2q5 − `3q2)U5 + µ`3q5U2

and
q′′,`1`1

= −2µ
(
2`1q′5 − `3q′1 + q5

)
U5 + 2µ`3q′5U1

q′′,`2`2
= −2µ(2`2q′5 − `3q′2 + q5)U5 + µ`3q′5U2

where U1 and U2 are the unit-load displacements with non-zero force imposed at Nodes 1
and 2, respectively.

As for the random variable, `3, it is presented in both multipoint constraints, which is
different from other random variables, `1 and `2, as each of the latter is presented in only
one multipoint constraint. Consequently, a revision of Equations (18) and (19) is required
to complete the differentiation as expressed below,

q′,`3
= −µ(2`3q1 − `3q5)U1 − µ(2`3q2 − `2q5)U2 − µ(`1q1 + `2q2)U5

q′′,`3`3
= −2µ

(
2`3q′1 − `3q′5 + q1

)
U1 − 2µ(2`3q′2 − `2q′5 + q2)U2 − 2µ

(
`1q′1 + `2q′2

)
U5

The first- and second-order derivatives of the reaction vectors, R, with respect to the
random variables, `1, `2 and `3, can also be calculated based upon Equations (21) and (22),
where R is defined by Equation (40).Again, some revision is required to calculate the deriva-
tives with respect to `3, which is involved in both multipoint constraints simultaneously.
The equations of the first- and second-order derivatives of R with respect to `1, `2, and `3
are listed in Appendix A for reference.

Once the derivatives of the displacement and the reaction force vectors with respect to
the random variables at their means become available, one can follow Equations (12) and (13)
to find the mean and standard deviation of these vectors. For validation, let the variables,
(`1, `2, `3, P) be normally distributed and statistically independent with covariances of 0.15.
Specifically, at the initial design, these are given by `1 ∼ N(15, 2.25), `2 ∼ N(27, 4.05),
`3 ∼ N(36, 5.40), and P ∼ N(15, 000, 2250). Tables 1 and 2 compare the means and stan-
dard deviations of the displacement and the reaction vector calculated by the Taylor’s series
expansion presented in this section with those by the Monte Carlo simulation with samples
of 106. The maximal error of the displacement vector was observed at the standard deviation
of the displacement at the free end of the horizonal bar, Node 5, while the maximal error of
the reaction vector was the standard deviation at Node 1. With reduced variations, the errors
in standard deviations were reduced, as demonstrated in Table 3, for the displacement vector.
It should be noted that only three unit-load analyses for U1, U2, and U5 were required to
complete the entire validation process presented in Tables 1–3.

Table 1. Mean and standard deviation of nodal displacement with all covariance equal to 0.15.

Nodal No. Mean—MC Mean—Equation (40) Std—MC Std—Equation (41)

1 0.1847 0.1847 0.0516 0.0504

2 0.3303 0.3303 0.0837 0.0823

5 0.4625 0.4618 0.1900 0.1757
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Table 2. Mean and standard deviation of nodal MPC reaction forces
(
×103) with all covariance equal

to 0.15.

Nodal No. Mean—MC Mean—Equation (40) Std—MC Std—Equation (41)

1 15.386 15.388 4.302 4.201

2 11.463 11.461 2.904 2.856

5 −15.001 −15.000 2.250 2.250

Table 3. Comparison of the differences in standard deviations of displacements for different covari-
ances in all random variables.

Nodal No.
Covariance = 0.15 Covariance = 0.10 Covariance = 0.05

MC Equation (41) MC Equation (41) MC Equation (41)

1 0.0516 0.0504 0.0340 0.0336 0.0169 0.0168

2 0.0836 0.0823 0.0553 0.0549 0.0275 0.0274

5 0.1898 0.1757 0.1211 0.1172 0.0591 0.0586

3.1.3. Reliability-Based Design Optimization

The goal of the design optimization in Example 1 was to find the lightest truss bars
that could control the deflection at Node 5, the free end of the rigid bar falling into the range
(0.43, 0.47), with different levels of reliability. To achieve this goal, the concerned design
variables included the cross-sectional areas of the truss members, which are deterministic,
and the standard deviations of the input random variables. In particular, the mathematical
expression of the design optimization problem is expressed in terms of statistical terms as

min
A1, A2, std`1 , std`2 , std`3 , stdp

f = A1 + A2

subject to : µq5 = 0.45

stdq5 ≤ 0.02
βPhj

/2

(P3)

where the cross-sectional areas of the vertical bars A1, A2 as well as the standard deviations
of `1, `2, and `3, denoted as std`1 , std`2 , and std`3 , are considered as the design variables.
The standard deviation of the point load, P, stdp, can also be included as a design variable.
The reliability index, βPhj

/2, in the above constraint, is associated with a 0.02 tolerance of

the mean value µq5 , as defined by Equations (32)–(34).
Five different cases of design optimization formulation (P3) were solved by the MAT-

LAB built-in function, fmincon. The required gradients were supplied by the finite difference
method. Their optimal solutions are summarized in Table 4. Case 1 was a deterministic de-
sign optimization in which only two variables, A1 and A2, were treated as design variables,
and the force and the boundary conditions were deterministic. Next, problem (P3) was
solved to achieve 95% of reliability, with the standard deviation of P set as a constant, 750.
The problem failed to converge. However, the problem could converge once the targeted
reliability was reduced to 60%. The associated results are listed in Case 2. It is shown that
the cross-sectional area, A1, approached its lower limit. The problem as then resolved by
including the standard deviation of the pressure, stdp, as an additional design variable. The
results of optimization runs for different ranges of Phj

described in Equation (31) are listed
in Cases 3 to 5 in Table 4. The results show that the free end deflection, q5, could reach
99.5% of confidence or fall into the range of (0.43, 0.47). Finally, the last column in Table 4
indicates that the reliability levels of the optimal solutions computed by the Taylor’s series
expansion approach were matched very well with those by the Monte Carlo simulation
with 106 samples. Note that only three unit-load displacement vectors, U1, U2, and U5
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were required in this example to complete this Monte Carlo simulation task at any optimal
solution of concern.

Table 4. Optimal designs of Example 1 with different Phj
.

Case
Objective

Weight

Design Variables Constraint

A1 A2
µ`1 15 µ`2 =27 µ`3 =6 µP=1.5 × 104 µq5

=0.45
Phj % MC%

std`1 std`2 std`3 stdp stdq5

1 2.1337 0.0037 2.130 0 0 0 0 0 0

2 2.1336 0.0005 2.133 0.4825 0.0234 0.3091 750.00 0.0238 60.0 59.99

3 2.1406 0.2083 1.941 0.5273 0.3015 0.4124 640.16 0.0238 60.0 59.96

4 2.1496 0.2168 1.932 0.4768 0.1782 0.2201 204.56 0.0102 95.0 95.00

5 2.1375 0.0539 2.083 0.5281 0.1130 0.1604 150.91 0.0071 99.5 99.48

3.2. Example 2–Shape Optimization of a Mooring Bracket Subject to Random Loads

The example problem was a bracket that is used for mooring small boats. The dimen-
sion of the mooring bracket is shown in Figure 2. The random point load was imposed at
the contact, Point P, on the side of the hole, caused by the pressure of the mooring clip. The
shape of the rectangular cutoff at the base of the mooring bracket was the concern of the
design. The goal of this design example was to find the best cutoff shape that minimized
the weight of the mooring bracket, while maintaining a satisfactory level of reliability for
constraints on the displacement, von Mises stress, and reaction forces. The shape of the
cutoff was measured by three variables: the left edge, xL, the height, xH , and the right edge,
xR. Their best values were scaled between their initial values, (1.14, 0.13, 2.8) and their
upper bounds (1.5, 0.31, 3.07) by introducing three design variables ranging between 0 and
1 as 

xL = 1.50 + b1(1.14− 1.50)
xH = 0.13 + b2(0.31− 0.13)
xR = 2.80 + b3(3.07− 2.80)
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The initial finite element model of the mooring bracket is displayed in Figure 3,
which was made of 238 quadrilateral elements and 284 total nodes, of which 13 were
along the fixed base boundary. The two components of the applied load at points P, Px,
and Py were assumed to be independent of each other and normally distributed. The
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maximal allowable nodal displacement, von Mises stress, and reaction force were also
assumed to be normal, which were set as N(0.0013, 0.00013)in, N(3.0E5, 3.0E4)psi, and
N(290, 29)lbs, respectively.
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To validate the use of the Taylor’s series expansion for the reliability analysis of this
example problem, the results of the unit-load-based approach described in Section 2 were
compared with those generated by the Monte Carlo simulation with 15,000 samples. The
output responses of concern in this example were the reliability indices of the magnitudes
of the nodal displacement, nodal von Mises stresses, and nodal boundary reactions. Two
independent random variables were considered in this study, Px and Py. The mean values
of these two load components were set as 750 lbs and 600 lbs, respectively. The results of
the maximal displacement and the maximal von Mises stresses at Point P and the maximal
reaction at Point R are tabulated in Table 5, which were computed for the values of the
variances set at 10%, 15%, and 20% for the loads Px and Py. It was noted that increasing
the value of COV in random loads would increase more in the standard deviations of
the structural responses than in the mean values, as the former are linear in the standard
deviations of input variables while the latter are quadratic. It is worthwhile mentioning here
that all the results listed in Table 5 were completed by using only two unit-load analyses.

Table 5. Mean and standard deviations of the structural responses for different COV values.

Responses Input COV
Taylor’s Series Expansion Monte Carlo Simulation

Mean Standard Dev. Mean Standard Dev.

Displacement ×10−4

at Point P

10% 8.1697 0.7441 8.1865 0.7415

15% 8.1697 1.1164 8.2071 1.1074

20% 8.1696 1.4888 8.2391 1.4691

V M stress ×105

at Point P

10% 2.2852 0.1894 2.2853 0.1893

15% 2.2853 0.2841 2.2852 0.2839

20% 2.2854 0.3788 2.2858 0.3789

BC reactions ×102 at Point R

10% −1.6080 0.1138 −1.6081 0.1138

15% −1.6080 0.1708 −1.6078 0.1706

20% −1.6080 0.2277 −1.6081 0.2278
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Next, following problem statement (P2), the shape optimization of the given mooring
bracket is now modeled as a standard design problem with inequality constraints expressed
in terms of the reliability indices of nodal displacements, βqi , stresses, βstj , and boundary
reactions, βrk :

min
b1, b2, b3

Volume

subject to
βq0 ≥ βq0 , i = 1, 2 . . . , n

βstj ≥ βst0 , j = 1, 2 . . . , n

βrk ≥ βro , k = 1, 2 . . . , m

where the lowest bounds of the required reliabilities, βq0 , βst0 , and βro , were set at 2.0,
which corresponded to 97.7% of reliability, Furthermore, the total nodal number, n, in the
above problem statement was found to be 284, while the total boundary node, m, was
13, based upon the initial finite element mesh in Figure 3. In the initial design, all of the
design variables were set at zero. The corresponding reliability index distributions of the
displacement field and the stress field are displayed in Figures 4 and 5. The volume of the
initial design was 0.6213 in3. However, it comes along with a violation on the boundary
reaction at point Q, as indicated in Figure 2. The values of the mean and standard deviation
of this reaction force were 203.7 lbs and 19.12 lbs, which resulted in a reliability index of
1.908, less than the required value of 2.
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To conduct the shape optimization, the MATLAB built-in function, fmincon, was used
to solve the optimization problem. The required gradients were computed by the finite
difference method. The final design had one design variable hitting the upper bound and
two constraints hitting the lower bound. Specifically, the design variables of the final design
were (1.0, 0.8247, 0.3604) with a volume of 0.5412 in3. One of the tight constraints was
associated with the reliability index of the nodal von Mises at Point P and the other was
the nodal boundary reaction force at Point R. Both had a reliability index of 2. The Monte
Carlo simulation with 15,000 samples was used to compute the reliability indices of all
constraints imposed upon the optimal design. The maximal reliability index was 2.0008,
very close to the upper bound set by the optimization formulation. This maximal reliability
index was associated with the maximal reaction force at Point R. The corresponding mesh
and the reliability index distributions of the displacement field and the stress field of the
optimal design are displayed in Figures 6–8.
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4. Conclusions

Deterministic design problems are, in general, not practical, as many do not count
variables with inherent uncertainty into the formulation such as mechanical properties,
support conditions, and external loadings. Implementing a reliability-based design can
help encapsulate many of the uncertainties and propagate the stochastic variables into the
structural design process to produce more reliable and confident results. Unfortunately,
incorporating uncertainties into a design is often computationally expensive, especially
when they involve an iterative optimization solution process. This study considered the
design of a linear structure subjected to the random point loads and boundary condi-
tions. For its simplicity in implementation, the Taylor series expansion was applied to
find accurate statistical measures of the structural responses, which included the nodal
displacements, the reaction forces, and the nodal von Mises stresses. To take advantage of
the linear nature of structural problems, a unit-load approach was applied in this study. For
a given design, this approach can generate reliability indices of all the nodal values of the
structural responses by using only a few unit-load displacement vectors. These unit-loaded
displacement vectors can be repeatedly used to find any order of derivatives required in the
Taylor series expansion with respect to random variables. Two design optimization exam-
ples were presented in this study. The first example was a truss design problem subjected
to randomness in the multipoint constraints. The penalty method was used to convert
the random multipoint constraints to random loads. Consequently, only four unit-load
analyses were required in each design iteration of the reliability-based optimization process.
The second example dealt with the nodal von Mises stresses in the shape optimization of a
plane stress problem under random point loads. A new approach was implemented here
to propagate the uncertainty linearly from the nodal displacements to the nodal von Mises
stresses, so only two unit-load equations were solved in each design optimization iteration
to compute the required reliability indices. The results of the optimization were validated
by Monte Carlo simulation with 106 samples for Example 1 and 15,000 for Example 2. The
entire validation process, however, was completed with only four unit-load equations for
Example 1 and two for Example 2.

These examples demonstrate that the method of unit-loads is very effective and
accurate to handle uncertainty and support reliability index analysis as well as design
optimization for a wide variety of applications. The applications of the current study
focused upon linear static analysis. It is expected that the proposed unit-load approach can
be extended to linear dynamic problems, which will be a topic for future study.
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Appendix A

The first- and second-order derivatives of the reactions at Nodes 1, 2, and 5 of Example
1 are listed below for reference.
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while the second-order derivatives are
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The means and the standard deviations of the reaction force vector, RT = (R1, R2, R5),

can be calculated based upon Equations (12) and (13), resulting from the Taylor’s series
expansion as

µR = R +
1
2

[
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σ2
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and
Var(R)= σ2

R =
(

R′,`1
σ`1

)2
+
(

R′,`2
σ`2

)2
+
(

R′,`3
σ`3

)2
+
(
R′,PσP

)2 (A2)

where µR and σR are the mean and the standard deviation vectors of R, and R is computed
based upon Equation (7), in which all random variables are evaluated at the means.
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