35 research outputs found

    Validation of four candidate pancreatic cancer serological biomarkers that improve the performance of CA19.9

    Get PDF
    Abstract Background The identification of new serum biomarkers with high sensitivity and specificity is an important priority in pancreatic cancer research. Through an extensive proteomics analysis of pancreatic cancer cell lines and pancreatic juice, we previously generated a list of candidate pancreatic cancer biomarkers. The present study details further validation of four of our previously identified candidates: regenerating islet-derived 1 beta (REG1B), syncollin (SYCN), anterior gradient homolog 2 protein (AGR2), and lysyl oxidase-like 2 (LOXL2). Methods The candidate biomarkers were validated using enzyme-linked immunosorbent assays in two sample sets of serum/plasma comprising a total of 432 samples (Sample Set A: pancreatic ductal adenocarcinoma (PDAC, n = 100), healthy (n = 92); Sample Set B: PDAC (n = 82), benign (n = 41), disease-free (n = 47), other cancers (n = 70)). Biomarker performance in distinguishing PDAC from each control group was assessed individually in the two sample sets. Subsequently, multiparametric modeling was applied to assess the ability of all possible two and three marker panels in distinguishing PDAC from disease-free controls. The models were generated using sample set B, and then validated in Sample Set A. Results Individually, all markers were significantly elevated in PDAC compared to healthy controls in at least one sample set (p ≤ 0.01). SYCN, REG1B and AGR2 were also significantly elevated in PDAC compared to benign controls (p ≤ 0.01), and AGR2 was significantly elevated in PDAC compared to other cancers (p \u3c 0.01). CA19.9 was also assessed. Individually, CA19.9 showed the greatest area under the curve (AUC) in receiver operating characteristic (ROC) analysis when compared to the tested candidates; however when analyzed in combination, three panels (CA19.9 + REG1B (AUC of 0.88), CA19.9 + SYCN + REG1B (AUC of 0.87) and CA19.9 + AGR2 + REG1B (AUC of 0.87)) showed an AUC that was significantly greater (p \u3c 0.05) than that of CA19.9 alone (AUC of 0.82). In a comparison of early-stage (Stage I-II) PDAC to disease free controls, the combination of SYCN + REG1B + CA19.9 showed the greatest AUC in both sample sets, (AUC of 0.87 and 0.92 in Sets A and B, respectively). Conclusions Additional serum biomarkers, particularly SYCN and REG1B, when combined with CA19.9, show promise as improved diagnostic indicators of pancreatic cancer, which therefore warrants further validation

    Desmoglein 2 is a substrate of kallikrein 7 in pancreatic cancer

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In a previous report we have demonstrated that the chymotryptic-like serine protease kallikrein 7 (<it>KLK7</it>/hK7) is overexpressed in pancreatic cancer. In normal skin, hK7 is thought to participate in skin desquamation by contributing in the degradation of desmosomal components, such as desmogleins. Thus, the ability of hK7 to degrade desmogleins was assessed and the effect of hK7 expression on desmoglein 2 was examined in cultured pancreatic cancer cells.</p> <p>Methods</p> <p>The expression of Dsg1, Dsg2, and Dsg3 in pancreatic tissues was examined by immunohistochemistry and their expression in two pancreatic cancer cell lines, BxPC-3 and Panc-1, was determined by western blot analysis. The ability of hK7 to degrade Dsg1 and Dsg2 was investigated using <it>in vitro </it>degradation assays. BxPC-3 cells stably transfected to overexpress hK7 were used to examine the effect of hK7 on cell-surface resident Dsg2.</p> <p>Results</p> <p>The levels of immunoreactive Dsg1 and Dsg2 were reduced in pancreatic adenocarcinomas compared with both normal pancreatic and chronic pancreatitis tissues. Among the desmosomal proteins examined, Dsg2 exhibited robust expression on the surface of BxPC-3 cells. When hK7 was overexpressed in this cell line, there was a significant increase in the amount of soluble Dsg2 released into the culture medium compared with vector-transfected control cells.</p> <p>Conclusion</p> <p>A reduction in the amount of the cell adhesion components Dsg1 and Dsg2 in pancreatic tumors suggests that loss of these desmosomal proteins may play a role in pancreatic cancer invasion. Using <it>in vitro </it>degradation assays, both Dsg1 and Dsg2 could be readily proteolyzed by hK7, which is overexpressed in pancreatic adenocarcinomas. The enforced expression of hK7 in BxPC-3 cells that express significant amounts of Dsg2 resulted in a marked increase in the shedding of soluble Dsg2, which is consistent with the notion that aberrant expression of hK7 in pancreatic tumors may result in diminished cell-cell adhesion and facilitate tumor cell invasion.</p

    Expression and regulation of the rat cholecystokinin gene

    No full text
    Cholecystokinin (CCK) is a polypeptide hormone which is produced in both the upper intestine and the central nervous system. Upon release from the intestinal mucosa, CCK stimulates pancreatic enzyme secretion and gallbladder emptying. Although CCK is present in unusually high concentrations in several brain regions, its function remains unclear. The expression and regulation of the rat CCK gene was studied by linking variable amounts of the 5\sp\prime-flanking region of the rat gene to the bacterial chloramphenicol acetyltransferase (CAT) reporter gene. Transfection assays indicate that sequences within 102 base pairs of the cap site are required for the expression from this promoter. This region contains a sequence that is homologous with both the c-fos and polyoma enhancers and the cAMP- and TPA-responsive elements described for several genes. In addition, the −-119 to −-81 fragment of the CCK promoter acts as a transcriptional enhancer in front of a heterologous promoter. Sequences located within 155 bp of the transcription initiation site were found to be responsive to the phorbol ester TPA and to elevated levels of cAMP induced by forskolin. These data indicate that the region homologous to known cAMP- and TPA-responsive elements might be responsible for the regulation of expression by these agents. However, additional studies will be required to identify and characterize the element(s) responsible for the transcriptional regulation by these substances. The element that confers tissue specificity on the rat gene was found to reside within a 2 kb fragment more than 800 bp upstream of the transcription initiation site. These studies utilized a stable cell line that was established from a rat medullary thyroid carcinoma known to produce high levels of immunoreactive CCK. Additional experiments will be necessary to define the boundaries of the tissue-specific element

    Insulin-like growth factor binding protein-5 influences pancreatic cancer cell growth

    No full text
    AIM: To investigate the functional significance of insulin-like growth factor binding protein-5 (IGFBP-5) overexpression in pancreatic cancer (PaC)

    Diagnosis of Pancreatic Cancer Using Serum Proteomic Profiling

    Get PDF
    In the United States, mortality rates from pancreatic cancer (PCa) have not changed significantly over the past 50 years. This is due, in part, to the lack of early detection methods for this particularly aggressive form of cancer. The objective of this study was to use highthroughput protein profiling technology to identify biomarkers in the serum proteome for the early detection of resectable PCa. Using surface-enhanced laser desorption/ionization mass spectrometry, protein profiles were generated from sera of 49 PCa patients and 54 unaffected individuals after fractionation on an anion exchange resin. The samples were randomly divided into a training set (69 samples) and test set (34 samples), and two multivariate analysis procedures, classification and regression tree and logistic regression, were used to develop classification models from these spectral data that could distinguish PCa from control serum samples. In the test set, both models correctly classified all of the PCa patient serum samples (100% sensitivity). Using the decision tree algorithm, a specificity of 93.5% was obtained, whereas the logistic regression model produced a specificity of 100%. These results suggest that high-throughput proteomics profiling has the capacity to provide new biomarkers for the early detection and diagnosis of PCa

    Validation of four candidate pancreatic cancer serological biomarkers that improve the performance of CA19.9

    No full text
    Abstract Background The identification of new serum biomarkers with high sensitivity and specificity is an important priority in pancreatic cancer research. Through an extensive proteomics analysis of pancreatic cancer cell lines and pancreatic juice, we previously generated a list of candidate pancreatic cancer biomarkers. The present study details further validation of four of our previously identified candidates: regenerating islet-derived 1 beta (REG1B), syncollin (SYCN), anterior gradient homolog 2 protein (AGR2), and lysyl oxidase-like 2 (LOXL2). Methods The candidate biomarkers were validated using enzyme-linked immunosorbent assays in two sample sets of serum/plasma comprising a total of 432 samples (Sample Set A: pancreatic ductal adenocarcinoma (PDAC, n = 100), healthy (n = 92); Sample Set B: PDAC (n = 82), benign (n = 41), disease-free (n = 47), other cancers (n = 70)). Biomarker performance in distinguishing PDAC from each control group was assessed individually in the two sample sets. Subsequently, multiparametric modeling was applied to assess the ability of all possible two and three marker panels in distinguishing PDAC from disease-free controls. The models were generated using sample set B, and then validated in Sample Set A. Results Individually, all markers were significantly elevated in PDAC compared to healthy controls in at least one sample set (p ≤ 0.01). SYCN, REG1B and AGR2 were also significantly elevated in PDAC compared to benign controls (p ≤ 0.01), and AGR2 was significantly elevated in PDAC compared to other cancers (p < 0.01). CA19.9 was also assessed. Individually, CA19.9 showed the greatest area under the curve (AUC) in receiver operating characteristic (ROC) analysis when compared to the tested candidates; however when analyzed in combination, three panels (CA19.9 + REG1B (AUC of 0.88), CA19.9 + SYCN + REG1B (AUC of 0.87) and CA19.9 + AGR2 + REG1B (AUC of 0.87)) showed an AUC that was significantly greater (p < 0.05) than that of CA19.9 alone (AUC of 0.82). In a comparison of early-stage (Stage I-II) PDAC to disease free controls, the combination of SYCN + REG1B + CA19.9 showed the greatest AUC in both sample sets, (AUC of 0.87 and 0.92 in Sets A and B, respectively). Conclusions Additional serum biomarkers, particularly SYCN and REG1B, when combined with CA19.9, show promise as improved diagnostic indicators of pancreatic cancer, which therefore warrants further validation
    corecore