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Abstract

In the United States, mortality rates from pancreatic

cancer (PCa) have not changed significantly over the

past 50 years. This is due, in part, to the lack of early

detection methods for this particularly aggressive form

of cancer. The objective of this study was to use high-

throughput protein profiling technology to identify

biomarkers in the serum proteome for the early

detection of resectable PCa. Using surface-enhanced

laser desorption/ionization mass spectrometry, protein

profiles were generated from sera of 49 PCa patients

and 54 unaffected individuals after fractionation on an

anion exchange resin. The samples were randomly

divided into a training set (69 samples) and test set (34

samples), and two multivariate analysis procedures,

classification and regression tree and logistic regres-

sion, were used to develop classification models from

these spectral data that could distinguish PCa from

control serum samples. In the test set, both models

correctly classified all of thePCapatient serumsamples

(100% sensitivity). Using the decision tree algorithm, a

specificity of 93.5% was obtained, whereas the logistic

regression model produced a specificity of 100%.

These results suggest that high-throughput proteomics

profiling has the capacity to provide new biomarkers

for the early detection and diagnosis of PCa.
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Introduction

Since 1950, the annual incidence of pancreatic cancer

(PCa) in the United States has increased from 5.3 to

9.2 cases per 100,000 population. The number of new

cases of pancreatic adenocarcinoma diagnosed each year

(f27,000 cases) essentially equals the mortality rate from

this disease (f26,000 deaths) [1,2]. Although a number of

studies indicate that the risk for PCa of cigarette smokers is

more than twice that for nonsmokers, in general, there is

little evidence for other extrinsic (e.g., alcohol or coffee

consumption, occupational exposure to carcinogens, and

radiation exposure) risk factors [3–7]. Thus, it has been difficult

to define an ‘‘at-risk’’ population for PCa screening.

As a further complication, detection of adenocarcinoma at

an early, treatable stage is difficult because the disease lacks

specific symptoms. Early symptoms of pancreatic carcinoma

including weight loss, anorexia, epigastric discomfort, and back

pain are often nonspecific and vague, so diagnosis may be

considerably delayed [8,9]. Furthermore, primary tumors of the

pancreas are relatively inaccessible to detection by routine

physical examination. Modern technological advances includ-

ing ultrasonography, dynamic computed tomography (CT

scan), magnetic resonance imaging (MRI), angiography, en-

doscopic retrograde cholangiopancreatography (ERCP), and

endoscopic ultrasonography have certainly aided the diagnosis

and staging of pancreatic carcinoma [7,10]. These new tech-

nologies, however, have not materially influenced survival from

PCa [10]. Although a wide variety of tumor-associated antigens

have been evaluated as markers for screening and diagnosis

of PCa, most have proven ineffective due to their low sensi-

tivity and cross-reactivity with other tumors. Thus, the poor

prognosis of patients is primarily due to the fact that most

patients present, and are treated, in the terminal stage of the

disease.

Despite the efforts of many groups, tumor markers that are

specifically expressed in PCa have yet to be identified. Cur-

rently, the tumor markers carcinoembryonic antigen (CEA) and

CA19-9, and mutations in the oncogene Ki-ras have been

employed in the staging and diagnosis of pancreatic neo-

plasms [11]. It has been found, however, that CA19-9 is

effective in discriminating between PCa and chronic pancrea-

titis, but not between PCa and other digestive cancers [12].

Although the diagnostic accuracy of CA19-9 appears superior
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to that of other tumor markers currently available, these

findings are valid only for patients with advanced cancers

[11–17]. CEA, a membrane glycoprotein originally described

as a tumor-associated colon cancer antigen, is now widely

used in clinical practice as a tumor marker [18]. CEA and

other tumor markers appear to have far less sensitivity and

specificity than CA19-9 in PCa. Sensitivity and specificity for

CEA have been reported to range from 59% to 71% and from

63.9% to 66.4%, respectively [14,16]. Using an upper limit of

normal of 37 U/ml, assays for CA19-9 have been reported to

range from 79.4% to 89.2% sensitivity and from 72.5% to

90% specificity [14,16,17]. Using a higher cutoff of 1000 U/

ml, the specificity of CA19-9 approaches 100%; however, the

sensitivity decreases to 24.3% to 41% [16,17]. CEA is

normally present in the human embryo and is found only in

minute amounts in healthy adults; however, it can be highly

expressed by malignant cells throughout the gastrointestinal

tract, as well as tumor cells arising from diverse locations

such as the breast, ovary, and lung [11]. Thus, the clinical

utility of CA19-9 is viewed by some clinicians as most

valuable in patients presenting with signs and symptoms of

a chronic pancreatic disorder, rather than as a screening test

to detect PCa in asymptomatic individuals [15,17].

Detection of cancer-derived gene products from biologic

fluids is an important emerging approach to the diagnosis of

malignant diseases. Due to the lack of any specific or

sensitive diagnostic test for the early stages of PCa, there

is a critical need for tumor markers to aid in the early

detection of this disease. Recent advances in techniques

used to generate ‘‘fingerprints’’ of cancer cells and identify

proteins elicited by tumors based on mass spectrometry

have yielded new biomarkers for the early detection of

cancers [19–22]. In particular, surface-enhanced laser de-

sorption/ionization time-of-flight mass spectrometry (SELDI-

TOF MS) [23–25] has been successfully applied to the

identification of serum biomarkers for the detection of breast

[26], liver [27], ovarian [28,29], and prostate cancers [30,31].

The goal of this study, therefore, was to use high-throughput

SELDI-TOF MS to identify directly the signature of serum

proteins in patients with pancreatic tumors compared with

patients without malignancies. We expect that new bio-

markers, which can be developed for the detection of this

deadly disease at a treatable (resectable) stage, will be

discovered.

Materials and Methods

Sample Collection and Preparation

Whole blood (5 ml) was collected in a serum separator

tube (SST) from patients at the University of Arkansas for

Medical Sciences Hospital and Clinics (Little Rock, AR) using

a protocol approved by the institutional IRB. Specimens were

collected from PCa patients and individuals with no evidence

of PCa. A self-administered questionnaire was collected

from each patient pertaining to gender, age, smoking and

alcohol usage, and medical history. For the separation of

serum, the blood in the SST tube was allowed to clot for 15

minutes and then centrifuged for 10 minutes at 1500g. The

serum from the SST was then aliquoted into cryovials and

immediately frozen at �70jC. Serum samples from PCa

patients were obtained from the Biospecimen Core in the

Pancreas Clinic at the Mayo Clinic Rochester (Rochester,

MN). Samples processed by the Mayo Clinic Molecular

Genetics Laboratory were collected in an EDTA lavender

or ACD yellow top tube, centrifuged at 3000 rpm for 10

minutes, aliquoted into tubes, and frozen at �70jC. All

serum samples were labeled with a unique identifier to

protect the confidentiality of the patient. None of the samples

was thawed more than twice before analysis.

The mean age (± SD) of the PCa patients was 66.4 ± 12.2

vs 53.5 ± 15.7 years among the control patients (P < .0001).

Thirty (61%) of the 49 cancer patients were male, compared

to 15 (28%) of 54 control patients (P = .0006). The 103 serum

samples were randomly divided into two groups in a 2:1 ratio

to yield a training set comprised of 36 patients with no

evidence of PCa, designated as ‘‘normal,’’ and 33 patients

diagnosed with PCa and a test set comprised of 34 serum

samples from both normal (n = 18) and PCa (n = 16) patients.

Staging information was available on 45 of 49 PCa patients

with a distribution of one stage I, 12 stage II, 13 stage III, and

19 stage IV patients. Included in the self-administered med-

ical histories of the non-PCa samples were seven patients

with a history of other cancers (five multiple myelomas, one

chronic lymphoblastic leukemia, and one testicular cancer).

A quality control (QC) sample was also prepared by pooling

serum from eight healthy male and eight healthy female age-

matched individuals.

Serum Fractionation

To increase the detection of a larger number of peaks as

well as to alleviate signal suppression effects on lower-

abundance proteins from highly abundant proteins such as

albumin, serum samples were fractionated into six fractions

containing proteins separated roughly on the basis of their

isoelectric points. Serum samples were loaded onto each

well of a 96-well filter plate prefilled with an anion exchange

sorbent (Serum Fractionation kit; Ciphergen Biosystems,

Freemont, CA) and eluted in a stepwise pH gradient using

a BIOMEK 2000 liquid-handling robot as described by the

manufacturer. The fraction containing the flow-through plus

proteins eluted with pH 9 buffer, which yields themost protein

peaks on the IMAC surface (S.B., unpublished observation)

[34], was selected for analysis. Each serum sample was di-

luted 10-fold during fractionation in 50 mM Tris–HCl, pH 9,

containing 0.1% nonionic detergent.

ProteinChip Array Analysis

For analysis of fractionated sera, samples were further

diluted 1:5 in phosphate-buffered saline (PBS) and applied

in duplicate onto each well of a 192-well bioprocessor con-

taining 16-spot IMAC-30 chips (Ciphergen Biosystems) pre-

viously activated with 100 mM CuSO4. The bioprocessor

was sealed and incubated with the samples for an hour, with

vigorous agitation on a Micromix 5 platform shaker. A pooled

QC sample prepared in the same manner was applied to
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duplicate spots on each chip used in each experiment as a

reproducibility control. The excess sera mixtures were dis-

carded and the chips were washed three times with PBS.

The chips were then washed with deionized water, removed

from the bioprocessor, and air-dried for 20 minutes. A

saturated solution of sinapinic acid (0.5 ml) in 50% acetoni-

trile, 0.5% trifluoroacetic acid was applied to each spot on the

chip surfaces. The array surface was allowed to dry for 10

minutes before another application of 0.5 ml of the sinapinic

acid solution.

Data Acquisition

ProteinChip arrays were read by a PBS-II C mass ana-

lyzer (Ciphergen Biosystems) and the spectral data were

acquired using Ciphergen Biosystems’ ProteinChip software

version 3.1. The TOF spectra were generated by averaging

156 laser shots in the positive mode with a laser intensity of

180, detector sensitivity of 8, and a focus lag time of 782

nanoseconds. The data acquisition parameters were opti-

mized to detect peaks in the range of 2 to 20 kDa, as this

range contained the majority of the resolved protein/peptide

peaks. Mass accuracy was calibrated using the all-in-one

peptide and all-in-one protein molecular weight standards

(Ciphergen Biosystems).

Data Analysis

The serum samples were analyzed in two batches. Peaks

were baseline-corrected and the spectra were normalized by

total ion current (TIC), the sum of ion intensities between the

2 and 20 kDa mass range applying the normalization coef-

ficient of the initial set of samples analyzed to normalize the

second set. Spectra for which the normalization factors were

either > 2 or < 0.5 were discarded. Using Ciphergen Bio-

systems’ Biomarker Wizard tool available with the Protein

Chip software, peaks consistently present across a minimum

of 20% of the spectra with a signal-to-noise ratio z 2.5 and

present within a mass window of 0.3% were detected and

clustered in the set. Corresponding peaks were likewise

identified in the spectra from the second set of samples

using the clustering data from the initial set.

Univariate Analysis

For each peak, the median patient-averaged intensity

was calculated for the normal and cancer groups. The

difference in group medians was reported as a ratio, the fold

change, and assessed for statistical significance through the

Wilcoxon rank-sum test with t approximation. Multiple com-

parison adjustment of P values was through the Stepdown

Permutation procedure of Westfall and Young [32] using

100,000 random permutations of class labels. A peak was

deemed to show a statistically significant difference in group

medians if its multiple comparison-adjusted P value was less

than .05.

Reproducibility

To examine the uniformity of spectral data collected within

and between experiments, a sample of the QC serum was

spotted in duplicate on each chip. The resulting spectra were

normalized, and the intensities of each peak identified by the

Ciphergen Biosystems software were measured. To mea-

sure variation between spots within a chip, the Spearman

correlation was calculated for the two QC samples on each

chip and the median correlation was determined for the 10

chips used in the training set. For the interchip correlation, the

average intensities for the two QC samples per chip were

determined, the Spearman correlation was calculated for

each of five randomly selected pairs of chips used in the

training set, and the median correlation of the pairs was

reported.

Intracluster Correlation Analysis

After TIC normalization, a total of 164 useable spectra

was obtained from 103 patients, with 61 patients contributing

pairs of spectra and 42 patients contributing single spectra. It

was expected that SELDI peaks from spectra paired by

patient would show appreciable correlation of intensities.

To determine the amount of correlation, the paired spectra

were subjected to variance components analysis on a peak-

by-peak basis using a random effects model with ‘‘patient’’ as

the random effect. In this manner, the within-patient and

between-patient variance terms were obtained for each

peak. The intracluster correlation coefficient (ICCC) was

calculated as the ratio of the between-patient variance to

the sum of the variance terms. For the 37 peaks with an m/z

ratio between 2000 and 20,000, the ICCCs had a median

value (interquartile range) of 85% (79–89%). Because of the

high ICCCs, the paired spectra from each patient were

averaged together on a peak-by-peak basis for subsequent

logistic regression analyses.

Multivariate Logistic Regression Classification

In multivariate model development, a weighted logistic

regression was used, in which the 42 patients contributing

single spectra were given a weight of 1.00, whereas the 61

patients contributing the average of two spectra were given a

weight equal to 2 minus the median ICCC (about 1.15).

Weights were then multiplied by a constant so that their

sum would be equal to the sample size. Our approach to

developing a classification model was guided by the recog-

nition that the results of automated variable selection proce-

dures can depend heavily on how the patients are allocated

into training and test sets. We sought for our final model a set

of peaks that would be insensitive to such allocation effects.

To accomplish this, we developed our classification model in

several stages.

In stage 1, the 103 patients (49 cancer; 54 normal) were

randomly divided into a training set of 52 patients (25 cancer)

and a test set of 51 patients (24 cancer). This process was

repeated 10,000 times to generate 10,000 random divisions

of the patients into training and test sets.

In stage 2, logistic regression was applied to the training

set of each random division of stage 1, with SELDI peaks

chosen by forward selection under an entry threshold of 0.1,

and the resulting model was then applied to the test set of

that random division. The response variable was the cancer

versus normal classification, and the goal was to predict
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correctly the class of test set members. Cross-validation and

test set class prediction probabilities were recorded along

withmodel parameter estimates. In this manner, we collected

10,000 logistic regression models generated by forward

selection on randomly chosen training sets, and 10,000

associated classification probabilities for each patient, ap-

proximately half of which were test set class prediction

probabilities. The frequency of each peak’s incorporation into

a forward selection model was calculated, and the five most

frequently incorporated peaks (‘‘the five good peaks’’) were

singled out for further modeling in stage 3. Additionally,

probabilities of prediction into the correct class were summed

across all test set patients within a random division. Final

models whose sums of correct class prediction probabilities

were near themaximumof 51 showed three frequent patterns

of peak selection; the most frequent of these (‘‘the four-peak

pattern’’) was also singled out for further modeling in stage 3.

In stage 3, logistic regression using the five good peaks or

the four-peak pattern was applied without variable selection

to the training set of each random division of stage 1, and the

resulting model was then applied to the test set of that

random division. As in stage 2, the goal was to predict

correctly the class of test set members. Cross-validation

and test set class prediction probabilities were recorded

along with parameter estimates for models using the five

good peaks, and the same was done for models using the

four-peak pattern. In this manner, we generated a distribu-

tion of estimated parameter vectors for both model types,

and a distribution of classification probabilities for each

patient. For each model type, the probabilities of correct

class prediction were summed across all test set patients

within a random division for use in stage 4.

In stage 4, the sums of correct class prediction probabil-

ities were assigned fractional ranks under the ‘‘ties=high’’

rule; this was done separately for the four-peak-pattern

models, the five-good-peak models, and the forward selec-

tion models. Performance of the three types of models

across 10,000 random divisions was then compared visually

by plotting sums of correct class prediction probabilities

against their fractional ranks. To provide a second measure

of performance for the three types of models, each patient’s

test set probabilities for cancer prediction were averaged

together to give an average Prob(Cancer) based on the

number of times the patient appeared in 10,000 test sets.

Receiver-operating characteristic (ROC) curves were then

calculated for each type of model. The area under the curve

(AUC) was calculated and used to compare the three types

of models for average performance on 10,000 random

divisions of the data into training and test sets.

On the basis of stage 4 results, it was determined that

models based on the four-peak pattern, consisting of SELDI

peaks having median m/z ratios of 3966.8, 3983.1, 8951.7,

and 7787.2, were far more likely to classify well, regardless

of random allocation into training and test sets, when com-

pared to models based on either the five good peaks or

forward selection. To derive a final multivariate classification

model, the 103 patients (49 cancer) were divided randomly

one more time into a training set of 69 patients (33 cancer)

and a test set of 34 patients (16 cancer). The four-peak

pattern was trained on the training set and applied to the test

set, and sensitivities and specificities of class prediction were

calculated under resubstitution, cross-validation, and test set

classification. The likelihood ratio test was used to determine

whether it was necessary to covariate-adjust the final clas-

sification model for the age and gender imbalance between

cancer and normal patients.

Classification and Regression Tree (CART) Model

The Biomarker Pattern software (version 4.0.1; Cipher-

gen Biosystems) implements the CART statistical procedure

described by Breiman et al. [33] to build a decision tree that

can classify a sample set into a given number of groups.

Classification trees were developed using a variety of pre-

dictors (peaks) and program parameters to build trees. Tree

building was then repeated to yield the best prediction

success with the lowest error cost. The optimal tree was

produced using a Gini power of zero, a minimum parent node

size of four, a 10-fold cross validation, and univariately

significant peaks with a median intensity > 10 in either the

cancer or normal serum samples as the input predictors.

Results

Serum Protein Profiles

To begin to screen for potential serum biomarkers and

identify a unique signature of serum proteins for early

detection of resectable PCa using the SELDI-TOF MS

technique, sera from 49 PCa patients and 54 control patients

were fractionated by anion exchange chromatography. In

this study, proteins that eluted with pH 9 buffer (flow-through

+ fraction 1) were applied in duplicate to IMAC3 ProteinChips

(Ciphergen Biosystems) and bound proteins were detected

with a ProteinChip Reader after laser desorption/ionization.

After normalization, 164 spectra were compiled and mass

peaks with mass-to-charge ratios (m/z) between 2000 and

20,000 and a signal-to-noise ratio > 2.5 were identified,

clustered, and analyzed. As shown in Figure 1, differences

in protein profiles between serum samples collected from

PCa patients versus controls were readily detected using

SELDI-TOF MS.

ProteinChip Reproducibility

To examine the variation in data collection within and

between the ProteinChips used in these experiments, a QC

sample representing a pool of sera from age-matched male

and female control subjects was applied in duplicate to each

ProteinChip. For each of the 10 chips used in the initial

analysis, the Spearman correlation was determined for the

QC samples on each chip, resulting in a median intrachip

correlation of 0.89. To examine the interchip correlation, the

average intensities of the two QC spectra on each chip were

determined, and the Spearman correlation was calculated

for five randomly selected pairs of the 10 chips used in the

initial set. The median interchip correlation for the five pairs

was 0.95.
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Univariate Analysis

Of the 37 SELDI peaks with median m/z ratio between

2000 and 20,000, 20 showed a statistically significant differ-

ence (P < .05) in median intensities between the cancer and

control samples (Table 1). Table 1 shows the fold change of

increase or decrease, along with raw and adjusted P values.

An adjusted P value of zero means that the corresponding

raw P value was lower than any produced by chance from

100,000 random permutations of class labels. Eight of these

specific protein peaks were elevated in PCa serum samples

(1.66- to 2.24-fold, PCa versus normal) and 12 peaks were

higher in sera from unaffected individuals (1.96- to 10.86-

fold, control versus PCa).

Multivariate Logistic Regression Classification

Figure 2 shows the proportion of times each peak was

incorporated under forward selection into classification mod-

els trained on 10,000 randomly chosen training sets of 52

patients (25 cancer). Only the 25 most frequently selected

peaks are shown, although every peak was selected at least

once. Median m/z ratios (incorporation rates ± standard

errors of rate) for the five peaks with highest multivariate

usage are: 3966.8 (92.8% ± 0.26%), 3983.1 (65.6% ±

0.48%), 4309.4 (32.8% ± 0.47%), 8951.7 (21.0% ± 0.41%),

and 5592.5 (17.1% ± 0.38%). These five peaks became ‘‘the

five good peaks’’ of additional classification modeling. The

6th to 10th peaks (median m/z of 9157.9, 3902.2, 4479.5,

8620.7, and 7787.2) had usage rates ranging from 12.3% to

10.4%, the 11th to 25th peaks had usage rates ranging from

4.62% to 1.00%, and the 12 peaks not shown in the figure

had usage rates ranging from 0.90% to 0.12%. The two

predominant features of Figure 2 are: 1) the sharp but

smooth drop in incorporation rates from 90% to 10% for

the first 10 peaks, and 2) the discontinuity in the trend

between the 10th and 11th peaks. When the 10,000 forward

selection models were applied to their test sets, 128 yielded

sums of correct class prediction probabilities within 0.1 of the

maximum value of 51. The peaks at 3966.8 and 3983.1

appeared in all 128; additional peaks at 8951.7 and 7787.2

appeared in more than half. These four peaks were the 1st,

2nd, 4th, and 10th most frequently incorporated peaks under

forward selection; they became ‘‘the four-peak pattern’’ of

additional classification modeling.

In additional classification modeling, the same 10,000

randomly chosen training sets were used to train classifica-

tion models containing either the five good peaks or the four-

peak pattern; the resulting models of each type were then

applied to their test sets to obtain class prediction probabil-

ities. For each test set and model type, the probabilities of

prediction into the correct class were summed across

patients, and the sums given fractional ranks. For each

patient, the probabilities of prediction into the cancer class

were averaged across test sets in which the patient ap-

peared, and the average probabilities were used to generate

ROC curves. Figure 3 shows the results of plotting sums of

Figure 1. Difference in SELDI spectra between normal and cancer serum samples. Upper panel: A portion of spectra from normal and PCa serum samples is

depicted as tracings in GelView (darker shades indicate higher mass peak intensities). Lower panel: An expanded portion of tracings from a PCa patient serum and

an unaffected individual is displayed, highlighting the differences in mass ions detected in the two patient populations.
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probabilities against their fractional ranks for the forward

selection models, the five-good-peak models, and the four-

peak-pattern models. The sum of probabilities per test set

can be interpreted as the expected number of correctly

classified patients in that test set; it therefore has a maxi-

mum value of 51. Under forward selection, 128 models

(1.28%) yielded an expected number within 0.1 of the

maximum value, whereas 9382 models (93.82%) yielded

an expected number below 49.9. Using the five good peaks,

144 models (1.44%) yielded an expected number within 0.1

Table 1. Significant Peaks by Univariate Analysis.

m/z Median Cancer Median Normal Cancer Effect Fold Change Raw* WRS P values Adjustedy P values Peaks Used

CART LR

3,276.1 0.488 1.948 Down 3.99 1.31E�08 0

3,902.2 2.583 11.608 Down 4.49 2.45E�20 0 X

3,966.8 3.291 25.679 Down 7.80 3.58E�23 0 X X

3,983.1 1.830 15.466 Down 8.45 5.93E�16 0 X X

4,295.4 1.721 18.692 Down 10.86 3.72E�19 0

4,309.4 3.341 6.560 Down 1.96 4.43E�05 0.00122

4,479.5 4.603 2.492 Up 1.85 5.04E�05 0.00126

4,651.3 1.105 7.629 Down 6.91 1.04E�12 0

5,592.5 0.210 1.461 Down 6.95 6.94E�12 0

6,453.2 2.146 5.868 Down 2.73 0.0026 0.04274

6,648.1 6.124 18.273 Down 2.98 0.00032 0.00649

7,487.2 0.867 2.485 Down 2.87 5.91E�11 0

7,787.2 1.437 4.125 Down 2.87 2.55E�07 0.00003 X

8,620.7 16.195 7.768 Up 2.08 5.94E�08 0.00001 X

8,951.7 29.137 15.360 Up 1.90 1.37E�08 0 X X

8,966.2 15.177 7.188 Up 2.11 1.88E�09 0

9,157.9 4.067 1.816 Up 2.24 2.83E�11 0

11,498.4 0.354 0.213 Up 1.66 0.0026 0.04274

11,654.9 0.377 0.178 Up 2.12 0.00069 0.01349

11,711.9 0.393 0.215 Up 1.83 0.00071 0.01349

*Wilcoxon rank-sum test with t approximation.
yP values adjusted for multiple comparisons using stepdown permutation procedure [32].

Figure 2. Rate of incorporation into multivariate logistic classification models. The rate of incorporation was based on 10,000 random divisions of the data from 52

patients into training and test sets of approximately equal size. Each training set was used to develop a classification model via multivariate logistic regression using

forward selection with an entry threshold of P = .10. The incorporation rate for each peak is thus the proportion of times it was selected into 10,000 multivariate

classification models trained on random samples of half of the data. Only the 25 most frequently selected peaks are shown.
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of the maximum value, whereas 7041 models (70.41%)

yielded an expected number below 49.9. Using the four-

peak pattern, 3280 models (32.80%) yielded an expected

number within 0.1 of the maximum value, and only 3702

models (37.02%) yielded an expected number below 49.9.

Figure 4 shows the ROC curves generated from the aver-

age of cancer prediction probabilities for each patient when

they appeared in a test set. The AUCs are 0.9845 for the

forward selection models, 0.9962 for the five-good-peak

models, and 0.9996 for the four-peak-pattern models; an

AUC of 1.0000 would denote a correct classification of

every patient in every one of their appearances in a test

Figure 3. Plots of sums of probabilities against their fractional ranks for the forward selection models. The results of plotting sums of probabilities against their

fractional ranks for the four-peak-pattern (solid line), five-peak-pattern (dashed line), and forward selection (dotted line) models. The sum of probabilities per test

set can be interpreted as the expected number of correctly classified patients in that test set; it therefore has a maximum value of 51.

Figure 4. ROC curves generated from the average of cancer prediction probabilities for each patient. ROC curves generated from the average probability of cancer

based on each patient’s appearances in 10,000 random test sets. The AUC for the four-peak-pattern models (solid line) is 0.9996, for the five-peak-pattern models

(dashed line) is 0.9962, and for the forward selection models (dotted line) is 0.9845.
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set. These results indicate that models generated from

the four-peak pattern tend far more often to classify test

set patients correctly, compared to models generated from

either the five good peaks or from forward selection on all

37 peaks.

To derive parameter estimates for the final logistic re-

gression classification model, the 103 patients were random-

ly divided one more time in a 2:1 ratio, so that the training set

had 69 patients (33 cancer) and the test set had 34 patients

(16 cancer). The training set was then subjected to logistic

regression using the four-peak pattern, and the resulting

model was then tested on the test set. Table 2 shows the

parameter estimates and classification rule for the four-peak-

pattern model trained on this particular training set, and

Table 3 shows the sensitivity and specificity for the classifi-

cation rule under resubstitution, cross-validation, and test set

prediction. In additional analysis (not shown), we studied

whether the confounding of cancer with age and gender in

this data set would require their addition as covariates to the

final classification model. We resubjected the training set to

logistic regression using the four-peak pattern augmented

with age and gender, and then used the likelihood ratio test to

compare the augmented model to the model of Table 2. The

comparison yielded a P > .999, strongly suggesting that

covariate adjustment for age and gender is not needed.

CART Analysis

The Biomarker Patterns software (Ciphergen Biosys-

tems) was used to identify a subset of mass peaks that

could discriminate the patient sera. Initially, all 20 of the

significant peaks identified by univariate analysis were eval-

uated as potential predictors using 111 spectra derived from

the 69 serum samples initially used in the same training set

used for the final logistic regression classification model.

Each split was then rank-ordered on the basis of the quality-

of-split criterion using the Gini rule (a measure of how well

the splitting rule separates the classes contained in the

parent node) [33]. Once a best split was found (e.g., node

1 in Figure 5), the algorithm repeated the search process for

each child node, continuing recursively until further splitting

was impossible or stopped. After the maximal tree was

grown, smaller trees were examined by pruning away

branches of the maximal tree, using cross-validation to

estimate the error rate of the subtrees. Following this same

procedure, a variety of possible predictors (peaks) and

program parameters were used to build an optimal classifi-

cation tree that yielded the lowest error cost. The optimal tree

(i.e., the tree with the lowest error cost) was generated using

the eight peaks with significant differences between the

cancer and normal groups that had a median intensity > 10

in either the cancer or normal group as the input predictors

(Table 1). From these initial eight peaks, five peaks were

identified, which discriminated the control and PCa sera

(Figure 5) with a sensitivity of 96.5% and a specificity of

100% (Table 3). Three of these five peaks (m/z = 3966.8,

3983.1, and 8951.7) had also been identified in the multivar-

iate logistic regression model as the best discriminators of

PCa versus non-PCa sera (Table 1). Using a 10-fold cross-

validation of the training set, a sensitivity of 93% and a

specificity of 94.4% were obtained (Table 3). The decision

matrix embodying the classification tree (Figure 5) was then

applied to a test set of 53 spectra, representing 34 serum

specimens. All of the 22 PCa spectra and 29 of 31 normal

spectra were correctly classified, yielding a sensitivity and

a specificity of 100% and 93.5%, respectively.

Group Comparisons

The intensities of the peaks used in the CART and logistic

regression models were plotted and compared for individual

spectra representing the control patients and PCa patients

for whom staging information was available (Figure 6). The

scatter plots reveal that the range of peak intensities for any

of the individual peaks used to classify normal versus cancer

overlaps between the normal samples and the PCa samples

regardless of tumor stage. This overlap may reflect the

historical failure to find a single marker that changes in serum

as pancreatic tumors (or most other tumors) progress, and

supports the notion that the successful discovery of new

diagnostic biomarkers will require a panel of markers whose

changes in serum levels are more subtle.

Discussion

Currently, there are no methods for the early detection of

PCa. As a consequence, patients frequently present with

Table 2. Logistic Classification Model.

Parameter Name Estimate of

Coefficient

Likelihood Ratio Test of Hnull: All

Coefficients Equal Zero

Intercept 173.8 Likelihood ratio

chi square analysis

95.5993

MZ03966.8 �23.0981

MZ03983.1 18.3736 Degrees of freedom 4

MZ08951.7 6.9714

MZ07787.2 �46.2511 P value < .0001

Classification equation: Score = 173.8 + (�23.0981*MZ03966.8) +

(18.3736*MZ0983.1) + (6.9714*MZ08951.7) + (�46.2511*MZ07787.2),

where ‘‘Score’’ equals the natural logarithm of the odds of being cancer, and

‘‘MZ0xxxx.x’’ represents the intensity of the peak with the indicated m/z ratio.

Classification decision rule: If Score is positive, classify as cancer; otherwise,

classify as normal.

Table 3. Classification Results.

CART Logistic Regression

Correct/Total Percent Correct/Total Percent

Training set resubstitution results

Sensitivity 55/57 96.5 33/33 100

Specificity 54/54 100 36/36 100

Training set cross-validation results

Sensitivity 53/57 93.0 31/33 93.9

Specificity 51/54 94.4 35/36 97.2

Classification results for test set

Sensitivity 22/22 100 16/16 100

Specificity 29/31 93.5 18/18 100
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metastatic disease for which treatment is palliative rather

than curative. The most widely used tumor-associated anti-

gen for PCa, CA19-9, lacks adequate sensitivity and spec-

ificity and has limited utility as an indicator of early, localized

pancreatic disease. As early surgery is the only curative

intervention, there is a lingering need for better biomarkers

for the early detection of resectable PCa. Recently, the use

of SELDI-TOF MS for high-throughput profiling of serum

proteins has gained attention as a facile method to identify

panels of peptides and proteins that may be indicative of

early disease for several cancers [26–31]. Using a similar

approach, we have identified protein profiles in this study that

were capable of distinguishing sera of PCa patients from

unaffected individuals.

A total of 103 serum samples, representing 49 patients

with PCa and 54 individuals with no evidence of PCa, were

used to prepare protein profiles. To enhance the selection of

mass peaks with biologic relevance, spectral data were

analyzed by two independent multivariate methods (CART

and multivariate logistic regression). In each of these meth-

ods, a small subset of mass peaks that could readily distin-

guish the two sample populations was identified. A

comparison of the features selected by these two models

indicates that three of the peaks are used as primary

discriminators in both models (m/z = 3966.8, 3983.1, and

8951.7) (Table 1). This observation provides confidence that

these mass peaks are disease-relevant classifiers.

The manner in which the aforementioned mass peaks

found their way into our logistic regression final model gives

us additional confidence that they are disease-relevant clas-

sifiers. The process by which these peaks were identified

was similar to the Bootstrap selection procedure described

by Koopmann et al. [34], but was computationally more

intensive. We divided the data randomly 10,000 times into

training and test sets of approximately equal size. We then

subjected the 10,000 random training sets to logistic regres-

sion with forward selection on all 37 mass peaks to see how

often each peak would be chosen for incorporation into a

Figure 5. CART decision tree. Spectra from 69 serum samples were used as a learning set to generate a decision tree to distinguish between serum obtained from

PCa patients and serum from unaffected individuals. Decision nodes (hexagons) represent individual mass peaks (m/z) and a threshold criterion for traversing the

tree (top to bottom). Terminal nodes (squares) determine whether a sample is classified as normal or PCa. One PCa sample (represented by two spectra) was

misclassified in the training set belonging to terminal node 4.
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multivariate classification model. We found that every peak

was chosen at least once (the minimum was 12 times), that

no peak was chosen 100% of the time (the maximum was

92.79%), and that the frequency of choice dropped sharply

from the maximum (Figure 2). These findings demonstrate

that the result of training a classification model under an

automated variable selection procedure can be markedly

sensitive to the particulars of a training-versus-test set

division. In an effort to avoid such allocation artifacts, we

chose two promising peak patterns to compare against

forward selection for their average performance as multivar-

iate logistic regression classifiers. The peaks at m/z =

3966.8, 3983.1, and 8951.7 were common to both patterns.

For each pattern, we trained its classifier on the random

training sets, tested the results on the corresponding random

test sets, and estimated the expected number of correct

classifications per test set for comparison. When the results

for all 10,000 random test sets were plotted (Figure 3), it was

clear that both patterns outperformed the set of models

trained under forward selection. One pattern in particular,

containing the three mass peaks above plus one other, did

extremely well. From test set results, we also computed the

average probability of being classified as cancer when in a

test set for each patient under each peak pattern. Because

this average probability per patient is based on that patient’s

appearance in about half of the 10,000 random test sets, it

Figure 6. Group comparisons. Scatter plots of peak intensities from individual spectra of control serum (Nml) or sera from stage II (including one stage IB patient),

III, and IV PCa patients for the eight peaks used in the logistic regression and CART classification models. Horizontal bar represents median peak intensities for

each group.
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can be interpreted as an estimate of the patient’s fractional

class membership that is independent of the particulars of

training-versus-test set division, but still sensitive to the

peak pattern and/or selection procedure used in the classi-

fier. That interpretation should carryover to ROC curves

constructed from such average probabilities (Figure 4).

These considerations add to our confidence that the peaks

we have identified have a classification proficiency that is

biologically real and not an artifact of the choice of samples

for the training set.

After cross-validation of the models, the spectra produced

from the remaining 34 serum samples (16 PCa and 18

controls) were used as an independent test set to validate

the two classification models. Both models correctly clas-

sified all of the PCa samples (100% sensitivity). The spe-

cificities determined for the two classification schemes

were 93.5% for the CART model and 100% for the logistic

regression model (Table 2). Included in the ‘‘normal’’ serum

samples were seven patients with histories of other malig-

nancies; thus, these models were able to correctly distin-

guish changes in serum protein profiles in PCa patients from

other malignancies. Although the number and types of other

malignancies included in this study are very limited, the

results provide promise that this approach will be useful for

specifically distinguishing PCa from other neoplasms based

on a panel of serum biomarkers.

An examination of the mass peaks utilized by the two

classification models reveals both increases and decreases

in their median intensities when comparing the PCa serum

proteome to that of the control serum (Table 1). This sug-

gests that specific circulating serum proteins/peptides can be

either elevated or diminished as a consequence of the

disease state, and that these changes may be exploited to

detect the presence of the tumor. Because the blood pro-

teome perfuses the diseased organ, proteins abnormally

shed by the tumor may add to the serum proteome, or

enhanced proteolytic-degrading activities of the tumor may

reduce specific serum protein levels [19]. A similar pattern of

overexpression and underexpression of peptide/protein

masses was observed by Adam et al. [30] in the serum

protein fingerprint of their prostate cancer study. The identi-

fication of these complex proteomics patterns, reflecting

both increases and decreases in specific serum proteins/

peptides, underscores the power of this technology in the

development of new diagnostic methods to detect early

cancer.

Both classification models greatly improve the sensitivity

and specificity of the current principal biomarker used for

PCa, CA19-9. Due to the low prevalence of PCa, however, a

much greater sensitivity is required before these types of

approaches can be clinically useful for the early detection of

PCa in an asymptomatic population. The predictive value

of the mass peaks identified in this study requires further

testing, including the examination of a larger panel of serum

from patients with stage I disease, other malignancies, as

well as benign diseases (including pancreatitis to assure that

we are not merely identifying acute-phase proteins associ-

ated with inflammation in cancer). Thus, although our results

are very promising, they are not intended to be the final

diagnostic paradigm.

In addition, protein discriminators may be added to these

models after analysis of protein profiles produced from other

serum fractions from these patients, as well as evaluation on

other chip surfaces. For example, by combining the spectral

data obtained from both weak cation exchange and copper

metal affinity capture arrays, Bañez et al. [31] reported a

significant enhancement in classification accuracy in their

study of prostate cancer. Such studies are ongoing with our

cohort. During the preparation of this report, a paper was

recently published describing a similar diagnostic approach

for PCa [34]. These authors also analyzed protein profiles

from two ProteinChip surfaces (including the IMAC sur-

face used in this study) as well as immunologic detection

of CA19-9. Improvements in diagnostic accuracy were also

noted for combinations between a particular marker panel

derived from one SELDI surface and CA19-9; however,

diagnostic panels were not reported for combinations of

markers between chip surfaces or anion exchange fractions.

Using a unified maximum separability algorithm to identify a

discriminatory panel of markers to differentiate sera of PCa

patients from control subjects, Koopmann et al. [34]

achieved a maximum sensitivity and specificity of 78% and

97%, respectively, using two protein peaks identified from

theWCX surface. The most discriminating peaks identified in

fraction 1 from the anion exchange resin applied to the IMAC

surface in their study, however, produced less effective

results. Interestingly, using a similar fractionation strategy

and ProteinChip IMAC surface, we have identified panels of

four or five markers using either multivariate logistic regres-

sion or CART models that yielded 100% sensitivity and

93.5% to 100% specificity.

Besides the apparent difference in data analysis techni-

ques utilized in these two studies, we attempted to identify

other differences that may explain the disparity in our abilities

to discriminate the PCa versus normal patient sera, particu-

larly when comparing the same protein fractionation scheme

and ProteinChip surface. Because both studies used ap-

proximately the same sample sizes to compare PCa versus

healthy controls, we examined other differences between the

patient populations. Both studies included patients with other

pathologic conditions (e.g., inflammatory diseases) as con-

trols to mute the identification of proteins involved merely in

inflammatory responses, although our study did not include a

patient population specifically for nonmalignant pancre-

atic diseases. However, this does not account for the dis-

criminatory differences observed for PCa versus healthy

individuals.

Although the mean age of PCa patients closely paralleled

those used in the Koopmann study [34], we noted that the

mean age of our control group was significantly lower. To

examine the possible effects of using a control population

with a lower mean age, we divided our control samples

(mean age ± SD) into a young group (41.7 ± 9.3) and an

old group (67.3 ± 8.8) such that the mean age of the old

group was similar to the cancer group. A comparison be-

tween the median peak intensities for the young and old
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groups did not reveal any significant differences for any of

the eight classification peaks (data not shown). Thus, the

difference in mean age of our normal and cancer groups

does not appear to have influenced our classification results.

Other potential causes of the differences observed in these

two studies include variations in the procedures used in

collecting and handling serum specimens, differences in

the alignment and calibration of the mass spectrometers,

or lot variations in the preparation of the ProteinChip surfa-

ces. It is intriguing, however, that with all the numerous

factors that might explain the differences in our results, in

both of our studies, one of the most discriminating markers

identified from the IMAC profiles is the peak with m/z 3967

(reported as 3966.8 in our study). This peak was utilized as a

discriminator in our multivariate logistic regression model

(Table 2) and as the first decision node in the classification

tree (Figure 5). In fact, this peak was incorporated into 93%

of multivariate logistic regression models developed under

forward selection (Figure 3), and was the major determinant

for segregating 79% of the PCa specimens in the CART

model (Figure 5, terminal node 1). Similarly, this peak was

among the discriminators in the three-peak IMAC-Cu2+

panel described by Koopmann et al. [34]. With such a similar

finding, it is tempting to speculate that we have both inde-

pendently identified the same serum protein in our two

studies. Thus, rather than highlighting the differences

obtained in these studies using this technology, this obser-

vation strengthens the notion that SELDI protein profiling is a

robust, reproducible procedure. The other two discriminators

in their three-peak panel (3885 and 8929) are within approx-

imately 17 and 23 Da of peaks we have identified (3902.2

and 8951.7); however, these would represent rather large

deviations by mass spectrometry. In view of the 3967 peaks

with essentially the same m/z in these two reports, it is

questionable whether these peaks represent the same

protein. These results, however, thus support the need

to identify these proteins to substantiate these evocative

findings.

The logistic regression classification equation (Table 2)

and classification tree (Figure 5) described in this report

should provide an easy means for validating future SELDI

analyses performed in any laboratory using the same Pro-

teinChip surface. After further validation and refinements to

the classification models, proteomics fingerprints may direct-

ly aid in the diagnosis of PCa and other malignancies and,

in themselves, constitute a valuable resource. The iden-

tification of the protein components of these fingerprints,

however, will also provide important insights into the mi-

croenvironment of tumors and provide a better understand-

ing of the processes involved in tumor development and

growth.
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ERRATUM

Chromosomal Alterations during Lymphatic and Liver
Metastasis Formation of Colorectal Cancer

Thomas Knösel, Karsten Schlüns, Ulrike Stein, Holger Schwabe, Peter Michael Schlag, Manfred Dietel
and Iver Petersen

The image in Figure 1A of the article by Knösel et al. (Neoplasia, Vol. 6, No. 1, January/February 2004, pp. 23–28) is

incorrect. It shows the CGH results of a subgroup of only 54 colorectal carcinomas and not the entire collective of

63 tumors as mentioned in the text. The larger collective shows slightly different frequencies of chromosomal imbalances

for single chromosomes (e.g., a maximal 90% incidence of gains on chromosome 20q). The correct image as well as

the histograms and CGH profiles of all individual tumors are accessible at the Charité CGH online tumor database at

http://amba.charité.de/cgh.
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