6 research outputs found

    Modeling of nanoparticle coatings for medical applications

    Get PDF
    Abstract Gold nanoparticles (AuNPs) have been shown to possess properties beneficial for the treatment of cancerous tumors by acting as radiosensitizers for both photon and ion radiation. Blood circulation time is usually increased by coating the AuNPs with poly(ethylene glycol) (PEG) ligands. The effectiveness of the PEG coating, however, depends on both the ligand surface density and length of the PEG molecules, making it important to understand the structure of the coating. In this paper the thickness, ligand surface density, and density of the PEG coating is studied with classical molecular dynamics using the software package MBN Explorer. AuNPs consisting of 135 atoms (approximately 1.4 nm diameter) in a water medium have been studied with the number of PEG ligands varying between 32 and 60. We find that the thickness of the coating is only weakly dependent on the surface ligand density and that the degree of water penetration is increased when there is a smaller number of attached ligands

    Transport of secondary electrons through coatings of ion-irradiated metallic nanoparticles

    Full text link
    The transport of low-energy electrons through the coating of a radiosensitizing metallic nanoparticle under fast ion irradiation is analyzed theoretically and numerically. As a case study, we consider a poly(ethylene glycol)-coated gold nanoparticle of diameter 1.6~nm excited by a carbon ion in the Bragg peak region in water as well as by more energetic carbon ions. The diffusion equation for low-energy electrons emitted from a finite-size spherical source representing the surface of the metal core is solved to obtain the electron number density as a function of radial distance and time. Information on the atomistic structure and composition of the coating is obtained from molecular dynamics simulations performed with the MBN Explorer software package. Two mechanisms of low-energy electron production by the metallic core are considered: the relaxation of plasmon excitations and collective excitations of valence dd electrons in individual atoms of gold. Diffusion coefficients and characteristic lifetimes of electrons propagating in gold, water, and poly(ethylene glycol) are obtained from relativistic partial wave analysis and the dielectric formalism, respectively. On this basis, the number of electrons released through the organic coating into the surrounding aqueous medium and the number of hydroxyl radicals produced are evaluated. The largest increase of the radical yield due to low-energy electrons is observed when the nanoparticle is excited by an ion with energy significantly exceeding that in the Bragg peak region. It is also shown that the water content of the coating, especially near the surface of the metal core, is crucial for the production of hydroxyl radicals.Comment: a contribution to the Special Issue "Atomic Cluster Collisions" of the European Physical Journal
    corecore