6 research outputs found

    Tectonics and sedimentation of the central sector of the Santo Onofre rift, north Minas Gerais, Brazil

    Full text link

    Mid- to Late Cenozoic canyon development on the eastern margin of the Rockall Trough, offshore Ireland

    No full text
    The sediment-undersupplied eastern margin of the Rockall Trough, west of Ireland, is incised by numerous canyons and slope failure features. Swath multibeam bathymetry has been integrated with 2D seismic profiles to constrain the Neogene evolution of the slope and its canyons. The morphology varies along the margin, with canyon heads located at mid-slope depths in the south but extending onto the shelf in the north. West of Porcupine Bank, slope gullies connect with a distributative channel system on the trough floor, while north of Porcupine Bank the basin floor is flat and featureless. Draped fault-blocks and deep structures exerted an important influence on slope gradients, canyon extent and geometry. A ‘bottom driven’ upslope–retrogressive slope failure mechanism is inferred for canyon formation. They were initiated by failure localisation following widespread slope rotation and instability linked to differential subsidence that produced a latest Eocene–early Oligocene (C30) regional unconformity. In the NE Rockall, where the greatest density of canyons occurs, a large mass failure wedge directly overlies the C30 surface and the seabed canyons have incised the upper part of the wedge. Axial profile data indicate that canyons in the NE Rockall Trough formed in Mid-Cenozoic times but were locally reutilised as sediment conduits during Plio-Pleistocene slope progradation. <br/

    An integrated study of Permo-Triassic basins along the North Atlantic passive margin: implication for future exploration

    No full text
    Permo-Triassic rift basins offer important hydrocarbon targets along the Atlantic margins. Their fill is dominated by continental red beds, comprising braided fluvial, alluvial fan, aeolian, floodplain and lacustrine facies. These relatively lightly explored basins span both the Atlantic and Tethyan domains and developed above a complex basement with inherited structural fabrics. Sparse data in offshore regions constrain understanding of depositional geometries and sedimentary architecture, further impeded by their deep burial beneath younger strata, combined with the effects of later deformation during continental breakup. This paper provides results from a multidisciplinary analysis of basins along the Atlantic margin. Regional seismic and well data, combined with geochemical provenance analysis from the European North Atlantic margins, are integrated with detailed outcrop studies in Morocco and Nova Scotia. The research provides new insights into regional basin tectonostratigraphic evolution, sediment fill, and reservoir distribution, architecture and quality at a range of scales. Regional seismic profiles, supported by key well data, indicate the presence of post-orogenic collapse basins, focused narrow rifts and low-magnitude multiple extensional depocentres. Significantly, Permo-Triassic basin geometries are different and more varied than the overlying Jurassic and younger basins. Provenance analysis using Pb isotopic composition of detrital K-feldspar yields new and robust controls on the sediment dispersal patterns of Triassic sandstones in the NE Atlantic margin. The evolving sedimentary architecture is characterized by detailed sedimentological studies of key outcrops of age equivalent Permian-Triassic rifts in Morocco and Nova Scotia. The interplay of tectonics and climate is observed to influence sedimentation, which has significant implications for reservoir distribution in analogue basins. New digital outcrop techniques are providing improved reservoir models, and identification of key marker horizons and sequence boundaries offers a potential subsurface correlation tool. Future work will address source and seal distribution within the potentially petroliferous basins

    Beds comprising debrite sandwiched within co-genetic turbidite: origin and widespread occurrence in distal depositional environments

    No full text
    Co-genetic debrite–turbidite beds occur in a variety of modern and ancient turbidite systems. Their basic character is distinctive. An ungraded muddy sandstone interval is encased within mud-poor graded sandstone, siltstone and mudstone. The muddy sandstone interval preserves evidence of en masse deposition and is thus termed a debrite. The mud-poor sandstone, siltstone and mudstone show features indicating progressive layer-by-layer deposition and are thus called a turbidite. Palaeocurrent indicators, ubiquitous stratigraphic association and the position of hemipelagic intervals demonstrate that debrite and enclosing turbidite originate in the same event. Detailed field observations are presented for co-genetic debrite–turbidite beds in three widespread sequences of variable age: the Miocene Marnoso Arenacea Formation in the Italian Apennines; the Silurian Aberystwyth Grits in Wales; and Quaternary deposits of the Agadir Basin, offshore Morocco. Deposition of these sequences occurred in similar unchannellized basin-plain settings. Co-genetic debrite–turbidite beds were deposited from longitudinally segregated flow events, comprising both debris flow and forerunning turbidity current. It is most likely that the debris flow was generated by relatively shallow (few tens of centimetres) erosion of mud-rich sea-floor sediment. Changes in the settling behaviour of sand grains from a muddy fluid as flows decelerated may also have contributed to debrite deposition. The association with distal settings results from the ubiquitous presence of muddy deposits in such locations, which may be eroded and disaggregated to form a cohesive debris flow. Debrite intervals may be extensive (&gt; 26 x 10 km in the Marnoso Arenacea Formation) and are not restricted to basin margins. Such long debris flow run-out on low-gradient sea floor (&lt; 0.1?) may simply be due to low yield strength (&lt;&lt;50 Pa) of the debris–water mixture. This study emphasizes that multiple flow types, and transformations between flow types, can occur within the distal parts of submarine flow events
    corecore