27 research outputs found

    Can we predict real-time fMRI neurofeedback learning success from pretraining brain activity?

    Full text link
    Neurofeedback training has been shown to influence behavior in healthy participants as well as to alleviate clinical symptoms in neurological, psychosomatic, and psychiatric patient populations. However, many real-time fMRI neurofeedback studies report large inter-individual differences in learning success. The factors that cause this vast variability between participants remain unknown and their identification could enhance treatment success. Thus, here we employed a meta-analytic approach including data from 24 different neurofeedback studies with a total of 401 participants, including 140 patients, to determine whether levels of activity in target brain regions during pretraining functional localizer or no-feedback runs (i.e., self-regulation in the absence of neurofeedback) could predict neurofeedback learning success. We observed a slightly positive correlation between pretraining activity levels during a functional localizer run and neurofeedback learning success, but we were not able to identify common brain-based success predictors across our diverse cohort of studies. Therefore, advances need to be made in finding robust models and measures of general neurofeedback learning, and in increasing the current study database to allow for investigating further factors that might influence neurofeedback learning

    Effective Self-Management for Early Career Researchers in the Natural and Life Sciences

    Full text link
    Early career researchers (ECRs) are faced with a range of competing pressures in academia, making self-management key to building a successful career. The Organization for Human Brain Mapping undertook a group effort to gather helpful advice for ECRs in self-management. Keywords: ECRs; career development; early career researchers; mentoring; networking; self-managemen

    Thalamic volume and functional connectivity are associated with nicotine dependence severity and craving

    Full text link
    Tobacco smoking is associated with deleterious health outcomes. Most smokers want to quit smoking, yet relapse rates are high. Understanding neural differences associated with tobacco use may help generate novel treatment options. Several animal studies have recently highlighted the central role of the thalamus in substance use disorders, but this research focus has been understudied in human smokers. Here, we investigated associations between structural and functional magnetic resonance imaging measures of the thalamus and its subnuclei to distinct smoking characteristics. We acquired anatomical scans of 32 smokers as well as functional resting‐state scans before and after a cue‐reactivity task. Thalamic functional connectivity was associated with craving and dependence severity, whereas the volume of the thalamus was associated with dependence severity only. Craving, which fluctuates rapidly, was best characterized by differences in brain function, whereas the rather persistent syndrome of dependence severity was associated with both brain structural differences and function. Our study supports the notion that functional versus structural measures tend to be associated with behavioural measures that evolve at faster versus slower temporal scales, respectively. It confirms the importance of the thalamus to understand mechanisms of addiction and highlights it as a potential target for brain‐based interventions to support smoking cessation, such as brain stimulation and neurofeedback

    Thalamic volume and functional connectivity are associated with nicotine dependence severity and craving

    Full text link
    Tobacco smoking is associated with deleterious health outcomes. Most smokers want to quit smoking, yet relapse rates are high. Understanding neural differences associated with tobacco use may help generate novel treatment options. Several animal studies have recently highlighted the central role of the thalamus in substance use disorders, but this research focus has been understudied in human smokers. Here, we investigated associations between structural and functional magnetic resonance imaging measures of the thalamus and its subnuclei to distinct smoking characteristics. We acquired anatomical scans of 32 smokers as well as functional resting-state scans before and after a cue-reactivity task. Thalamic functional connectivity was associated with craving and dependence severity, whereas the volume of the thalamus was associated with dependence severity only. Craving, which fluctuates rapidly, was best characterized by differences in brain function, whereas the rather persistent syndrome of dependence severity was associated with both brain structural differences and function. Our study supports the notion that functional versus structural measures tend to be associated with behavioral measures that evolve at faster versus slower temporal scales, respectively. It confirms the importance of the thalamus to understand mechanisms of addiction and highlights it as a potential target for brain-based interventions to support smoking cessation, such as brain stimulation and neurofeedback

    Disentangling craving‐ and valence‐related brain responses to smoking cues in individuals with nicotine use disorder

    Full text link
    Tobacco smoking is one of the leading causes of preventable death and disease worldwide. Most smokers want to quit, but relapse rates are high. To improve current smoking cessation treatments, a better understanding of the underlying mechanisms of nicotine dependence and related craving behaviour is needed. Studies on cue-driven cigarette craving have been a particularly useful tool for investigating the neural mechanisms of drug craving. Here, functional neuroimaging studies in humans have identified a core network of craving-related brain responses to smoking cues that comprises of amygdala, anterior cingulate cortex, orbitofrontal cortex, posterior cingulate cortex and ventral striatum. However, most functional Magnetic Resonance Imaging (fMRI) cue-reactivity studies do not adjust their stimuli for emotional valence, a factor assumed to confound craving-related brain responses to smoking cues. Here, we investigated the influence of emotional valence on key addiction brain areas by disentangling craving- and valence-related brain responses with parametric modulators in 32 smokers. For one of the suggested key regions for addiction, the amygdala, we observed significantly stronger brain responses to the valence aspect of the presented images than to the craving aspect. Our results emphasize the need for carefully selecting stimulus material for cue-reactivity paradigms, in particular with respect to emotional valence. Further, they can help designing future research on teasing apart the diverse psychological dimensions that comprise nicotine dependence and, therefore, can lead to a more precise mapping of craving-associated brain areas, an important step towards more tailored smoking cessation treatments. Keywords: craving; cue-reactivity; functional Magnetic Resonance Imaging; neuroimaging; nicotine use disorder; smoking

    Functional diversity of brain networks supports consciousness and verbal intelligence

    Get PDF
    © 2018, The Author(s). How are the myriad stimuli arriving at our senses transformed into conscious thought? To address this question, in a series of studies, we asked whether a common mechanism underlies loss of information processing in unconscious states across different conditions, which could shed light on the brain mechanisms of conscious cognition. With a novel approach, we brought together for the first time, data from the same paradigm—a highly engaging auditory-only narrative—in three independent domains: anesthesia-induced unconsciousness, unconsciousness after brain injury, and individual differences in intellectual abilities during conscious cognition. During external stimulation in the unconscious state, the functional differentiation between the auditory and fronto-parietal systems decreased significantly relatively to the conscious state. Conversely, we found that stronger functional differentiation between these systems in response to external stimulation predicted higher intellectual abilities during conscious cognition, in particular higher verbal acuity scores in independent cognitive testing battery. These convergent findings suggest that the responsivity of sensory and higher-order brain systems to external stimulation, especially through the diversification of their functional responses is an essential feature of conscious cognition and verbal intelligence

    The functional connectome of 3,4‐methyldioxymethamphetamine‐related declarative memory impairments

    Full text link
    The chronic intake of 3,4‐methylenedioxymethamphetamine (MDMA, “ecstasy”) bears a strong risk for sustained declarative memory impairments. Although such memory deficits have been repeatedly reported, their neurofunctional origin remains elusive. Therefore, we here investigate the neuronal basis of altered declarative memory in recurrent MDMA users at the level of brain connectivity. We examined a group of 44 chronic MDMA users and 41 demographically matched controls. Declarative memory performance was assessed by the Rey Auditory Verbal Learning Test and a visual associative learning test. To uncover alterations in the whole brain connectome between groups, we employed a data‐driven multi‐voxel pattern analysis (MVPA) approach on participants' resting‐state functional magnetic resonance imaging data. Recent MDMA use was confirmed by hair analyses. MDMA users showed lower performance in delayed recall across tasks compared to well‐matched controls with moderate‐to‐strong effect sizes. MVPA revealed a large cluster located in the left postcentral gyrus of global connectivity differences between groups. Post hoc seed‐based connectivity analyses with this cluster unraveled hypoconnectivity to temporal areas belonging to the auditory network and hyperconnectivity to dorsal parietal regions belonging to the dorsal attention network in MDMA users. Seed‐based connectivity strength was associated with verbal memory performance in the whole sample as well as with MDMA intake patterns in the user group. Our findings suggest that functional underpinnings of MDMA‐related memory impairments encompass altered patterns of multimodal sensory integration within auditory processing regions to a functional heteromodal connector hub, the left postcentral gyrus. In addition, hyperconnectivity in regions of a cognitive control network might indicate compensation for degraded sensory processing

    Self-regulation of the dopaminergic reward circuit in cocaine users with mental imagery and neurofeedback

    Full text link
    BACKGROUND Enhanced drug-related reward sensitivity accompanied by impaired sensitivity to non-drug related rewards in the mesolimbic dopamine system are thought to underlie the broad motivational deficits and dysfunctional decision-making frequently observed in cocaine use disorder (CUD). Effective approaches to modify this imbalance and reinstate non-drug reward responsiveness are urgently needed. Here, we examined whether cocaine users (CU) can use mental imagery of non-drug rewards to self-regulate the ventral tegmental area and substantia nigra (VTA/SN). We expected that obsessive and compulsive thoughts about cocaine consumption would hamper the ability to self-regulate the VTA/SN activity and tested if real-time fMRI (rtfMRI) neurofeedback (NFB) can improve self-regulation of the VTA/SN. METHODS Twenty-two CU and 28 healthy controls (HC) were asked to voluntarily up-regulate VTA/SN activity with non-drug reward imagery alone, or combined with rtfMRI NFB. RESULTS On a group level, HC and CU were able to activate the dopaminergic midbrain and other reward regions with reward imagery. In CU, the individual ability to self-regulate the VTA/SN was reduced in those with more severe obsessive-compulsive drug use. NFB enhanced the effect of reward imagery but did not result in transfer effects at the end of the session. CONCLUSION CU can voluntary activate their reward system with non-drug reward imagery and improve this ability with rtfMRI NFB. Combining mental imagery and rtFMRI NFB has great potential for modifying the maladapted reward sensitivity and reinstating non-drug reward responsiveness. This motivates further work to examine the use of rtfMRI NFB in the treatment of CUD

    Advances in real-time fMRI neurofeedback - from big data to individualized clinical applications

    Full text link
    Real-time functional Magnetic Resonance Imaging (fMRI) neurofeedback is a neuroimaging technique that allows individuals to gain voluntary control over their own brain signals. Previous real-time fMRI neurofeedback tudies have demonstrated that successful regulation of predefined brain regions of interest can lead to improvements in behavior in healthy individuals and improvements in clinical measures in a wide range of different patient populations. To further advance these applications of neurofeedback training, much progress has been made in recent years with regards to the development of novel neurofeedback methods and the tailoring of experimental paradigms to specific applications and patient groups. At the same time, the field of neurofeedback has also matured in that more and more data have been collected to aggregate information and to eventually gain a better understanding of which factors determine successful neurofeedback training. Both, novel neurofeedback approaches and the identification of generalizable factors that influence neurofeedback success can help to improve neurofeedback efficacy. In this Thesis, I pursued both of these complementary approaches to further advance the field of neurofeedback: First, I established a novel neurofeedback intervention that made use of an innovative brain-based adaptive closed-loop paradigm. I applied this new neurofeedback intervention to individuals with nicotine use disorder to support their smoking cessation. Second, I employed big data meta-analyses and machine learning methods to investigate factors that influence neurofeedback success across a large database of neurofeedback studies that I compiled. The results from this Thesis indicate that adaptive closed-loop neurofeedback can help individuals with nicotine use disorder to reduce nicotine dependence and consumed cigarettes. They further demonstrate that big data meta-analyses and machine learning algorithms are promising approaches for the determination of factors that influence neurofeedback success, however more data will be needed in the future. Thus, this Thesis might contribute to establishing a new form of neurofeedback intervention for substance use disorder as well as other clinical conditions, and to improving the efficacy of neurofeedback as a promising scientific tool and novel brain-based intervention

    Deficits in context-dependent adaptive coding in early psychosis and healthy individuals with schizotypal personality traits

    Full text link
    Adaptive coding of information is a fundamental principle of brain functioning. It allows for efficient representation over a large range of inputs and thereby alleviates the limited coding range of neurons. In the present study, we investigated for the first time potential alterations in context-dependent reward adaptation and its association with symptom dimensions in the schizophrenia spectrum. We studied 27 patients with first-episode psychosis, 26 individuals with schizotypal personality traits and 25 healthy controls. We used functional MRI in combination with a variant of the monetary incentive delay task and assessed adaptive reward coding in two reward conditions with different reward ranges. Compared to healthy controls, patients with first-episode psychosis and healthy individuals with schizotypal personality traits showed a deficit in increasing the blood oxygen level-dependent response slope in the right caudate for the low reward range compared to the high reward range. In other words, the two groups showed inefficient neural adaptation to the current reward context. In addition, we found impaired adaptive coding of reward in the caudate nucleus and putamen to be associated with total symptom severity across the schizophrenia spectrum. Symptom severity was more strongly associated with neural deficits in adaptive coding than with the neural coding of absolute reward outcomes. Deficits in adaptive coding were prominent across the schizophrenia spectrum and even detectable in unmedicated (healthy) individuals with schizotypal personality traits. Furthermore, the association between total symptom severity and impaired adaptive coding in the right caudate and putamen suggests a dimensional mechanism underlying imprecise neural adaptation. Our findings support the idea that impaired adaptive coding may be a general information-processing deficit explaining disturbances within the schizophrenia spectrum over and above a simple model of blunted absolute reward signals
    corecore