31 research outputs found

    Semiclassical theory of transport in a random magnetic field

    Get PDF
    We study the semiclassical kinetics of 2D fermions in a smoothly varying magnetic field B(r)B({\bf r}). The nature of the transport depends crucially on both the strength B0B_0 of the random component of B(r)B({\bf r}) and its mean value Bˉ\bar{B}. For Bˉ=0\bar{B}=0, the governing parameter is α=d/R0\alpha=d/R_0, where dd is the correlation length of disorder and R0R_0 is the Larmor radius in the field B0B_0. While for α1\alpha\ll 1 the Drude theory applies, at α1\alpha\gg 1 most particles drift adiabatically along closed contours and are localized in the adiabatic approximation. The conductivity is then determined by a special class of trajectories, the "snake states", which percolate by scattering at the saddle points of B(r)B({\bf r}) where the adiabaticity of their motion breaks down. The external field also suppresses the diffusion by creating a percolation network of drifting cyclotron orbits. This kind of percolation is due only to a weak violation of the adiabaticity of the cyclotron rotation, yielding an exponential drop of the conductivity at large Bˉ\bar{B}. In the regime α1\alpha\gg 1 the crossover between the snake-state percolation and the percolation of the drift orbits with increasing Bˉ\bar{B} has the character of a phase transition (localization of snake states) smeared exponentially weakly by non-adiabatic effects. The ac conductivity also reflects the dynamical properties of particles moving on the fractal percolation network. In particular, it has a sharp kink at zero frequency and falls off exponentially at higher frequencies. We also discuss the nature of the quantum magnetooscillations. Detailed numerical studies confirm the analytical findings. The shape of the magnetoresistivity at α1\alpha\sim 1 is in good agreement with experimental data in the FQHE regime near ν=1/2\nu=1/2.Comment: 22 pages REVTEX, 14 figure

    Sequences, Bent Functions and Jacobsthal Sums

    No full text
    corecore