6 research outputs found

    Machine learning explainability in breast cancer survival

    No full text
    Machine Learning (ML) can improve the diagnosis, treatment decisions, and understanding of cancer. However, the low explainability of how “black box” ML methods produce their output hinders their clinical adoption. In this paper, we used data from the Netherlands Cancer Registry to generate a ML-based model to predict 10-year overall survival of breast cancer patients. Then, we used Local Interpretable Model-Agnostic Explanations (LIME) and SHapley Additive exPlanations (SHAP) to interpret the model's predictions. We found that, overall, LIME and SHAP tend to be consistent when explaining the contribution of different features. Nevertheless, the feature ranges where they have a mismatch can also be of interest, since they can help us identifying “turning points” where features go from favoring survived to favoring deceased (or vice versa). Explainability techniques can pave the way for better acceptance of ML techniques. However, their evaluation and translation to real-life scenarios need to be researched further

    Twenty-three unsolved problems in hydrology (UPH) – a community perspective

    No full text
    This paper is the outcome of a community initiative to identify major unsolved scientific problems in hydrology motivated by a need for stronger harmonisation of research efforts. The procedure involved a public consultation through online media, followed by two workshops through which a large number of potential science questions were collated, prioritised, and synthesised. In spite of the diversity of the participants (230 scientists in total), the process revealed much about community priorities and the state of our science: a preference for continuity in research questions rather than radical departures or redirections from past and current work. Questions remain focused on the process-based understanding of hydrological variability and causality at all space and time scales. Increased attention to environmental change drives a new emphasis on understanding how change propagates across interfaces within the hydrological system and across disciplinary boundaries. In particular, the expansion of the human footprint raises a new set of questions related to human interactions with nature and water cycle feedbacks in the context of complex water management problems. We hope that this reflection and synthesis of the 23 unsolved problems in hydrology will help guide research efforts for some years to come

    Twenty-three unsolved problems in hydrology (UPH) – a community perspective

    No full text
    This paper is the outcome of a community initiative to identify major unsolved scientific problems in hydrology motivated by a need for stronger harmonisation of research efforts. The procedure involved a public consultation through online media, followed by two workshops through which a large number of potential science questions were collated, prioritised, and synthesised. In spite of the diversity of the participants (230 scientists in total), the process revealed much about community priorities and the state of our science: a preference for continuity in research questions rather than radical departures or redirections from past and current work. Questions remain focused on the process-based understanding of hydrological variability and causality at all space and time scales. Increased attention to environmental change drives a new emphasis on understanding how change propagates across interfaces within the hydrological system and across disciplinary boundaries. In particular, the expansion of the human footprint raises a new set of questions related to human interactions with nature and water cycle feedbacks in the context of complex water management problems. We hope that this reflection and synthesis of the 23 unsolved problems in hydrology will help guide research efforts for some years to come

    Twenty-three unsolved problems in hydrology (UPH) – a community perspective

    No full text
    This paper is the outcome of a community initiative to identify major unsolved scientific problems in hydrology motivated by a need for stronger harmonisation of research efforts. The procedure involved a public consultation through online media, followed by two workshops through which a large number of potential science questions were collated, prioritised, and synthesised. In spite of the diversity of the participants (230 scientists in total), the process revealed much about community priorities and the state of our science: a preference for continuity in research questions rather than radical departures or redirections from past and current work. Questions remain focused on the process-based understanding of hydrological variability and causality at all space and time scales. Increased attention to environmental change drives a new emphasis on understanding how change propagates across interfaces within the hydrological system and across disciplinary boundaries. In particular, the expansion of the human footprint raises a new set of questions related to human interactions with nature and water cycle feedbacks in the context of complex water management problems. We hope that this reflection and synthesis of the 23 unsolved problems in hydrology will help guide research efforts for some years to come
    corecore