10 research outputs found

    Evaluation of Parameter Fitting Procedures for Rigorous Equilibrium Model Development

    No full text
    AbstractAn automated procedure for optimizing interaction parameters in the extended UNIQUAC model is proposed. This method avoids manual manipulation and guessing of parameters. Some results of the implementation of the procedure for CO2 loaded piperazine, AMP and MEA are shown and demonstrate the performance of the procedure. In addition, some general problems associated with parameter fitting of this type of model and choice of objective function are discussed. Finally, if there are not enough experimental data for obtaining good predictions for all variables and operational ranges desired, some solutions are suggested to partially overcome this problem

    Modelling CO2 - water mixture thermodynamics using various equations of state (EoSs) with emphasis on the potential of the SPUNG EoS

    No full text
    CO2–water is a very important mixture in the Carbon Capture and Storage (CCS) industry. The mixture can have a broad range of concentrations, from water as an impurity in CO2 transport to high water concentrations in sequestration processes. CO2–water mixture is challenging due to the polar nature that induces difficulties describing the interaction between CO2 and water when modeling the behavior. The work focuses on the evaluation of the predictability of the extended corresponding state equation SPUNG in dealing with CO2–water thermodynamics. The evaluation is done by comparing the behavior of SPUNG equation of state (EoS) to experimental data, and two other EoSs of a different class. The two other EoSs are the cubic equation Soave–Redlich–Kwong (SRK) with van der Waals mixing rules, and SRK with Huron–Vidal mixing rules. The predictability of the single and liquid rich phase densities, two-phase solubilities and dew line is investigated over a wide range of pressures, temperatures and mixture compositions. The results show better density prediction using SPUNG EoS over all the evaluated conditions compared to SRKs with a potential of improvements by changing the reference fluid. However, the CO2 solubility prediction using SPUNG requires the use of other mixing rules that can account for the polar nature of the system

    Thermodynamics of an Empty Box

    Get PDF
    A gas in a box is perhaps the most important model system studied in thermodynamics and statistical mechanics. Usually, studies focus on the gas, whereas the box merely serves as an idealized confinement. The present article focuses on the box as the central object and develops a thermodynamic theory by treating the geometric degrees of freedom of the box as the degrees of freedom of a thermodynamic system. Applying standard mathematical methods to the thermodynamics of an empty box allows equations with the same structure as those of cosmology and classical and quantum mechanics to be derived. The simple model system of an empty box is shown to have interesting connections to classical mechanics, special relativity, and quantum field theory

    Thermodynamics of an Empty Box

    No full text
    A gas in a box is perhaps the most important model system studied in thermodynamics and statistical mechanics. Usually, studies focus on the gas, whereas the box merely serves as an idealized confinement. The present article focuses on the box as the central object and develops a thermodynamic theory by treating the geometric degrees of freedom of the box as the degrees of freedom of a thermodynamic system. Applying standard mathematical methods to the thermodynamics of an empty box allows equations with the same structure as those of cosmology and classical and quantum mechanics to be derived. The simple model system of an empty box is shown to have interesting connections to classical mechanics, special relativity, and quantum field theory
    corecore