5,530 research outputs found

    Opportunities and limitations of transition voltage spectroscopy: a theoretical analysis

    Get PDF
    In molecular charge transport, transition voltage spectroscopy (TVS) holds the promise that molecular energy levels can be explored at bias voltages lower than required for resonant tunneling. We investigate the theoretical basis of this novel tool, using a generic model. In particular, we study the length dependence of the conducting frontier orbital and of the 'transition voltage' as a function of length. We show that this dependence is influenced by the amount of screening of the electrons in the molecule, which determines the voltage drop to be located at the contacts or across the entire molecule. We observe that the transition voltage depends significantly on the length, but that the ratio between the transition voltage and the conducting frontier orbital is approximately constant only in strongly screening (conjugated) molecules. Uncertainty about the screening within a molecule thus limits the predictive power of TVS. We furthermore argue that the relative length independence of the transition voltage for non-conjugated chains is due to strong localization of the frontier orbitals on the end groups ensuring binding of the rods to the metallic contacts. Finally, we investigate the characteristics of TVS in asymmetric molecular junctions. If a single level dominates the transport properties, TVS can provide a good estimate for both the level position and the degree of junction asymmetry. If more levels are involved the applicability of TVS becomes limited.Comment: 8 pages, 12 figure

    Kondo effect in a few-electron quantum ring

    Get PDF
    A small quantum ring with less than 10 electrons was studied by transport spectroscopy. For strong coupling to the leads a Kondo effect is observed and used to characterize the spin structure of the system in a wide range of magnetic fields. At small magnetic fields Aharonov-Bohm oscillations influenced by Coulomb interaction appear. They exhibit phase jumps by π\pi at the Coulomb-blockade resonances. Inside Coulomb-blockade valleys the Aharonov-Bohm oscillations can also be studied due to the finite conductance caused by the Kondo effect. Astonishingly, the maxima of the oscillations show linear shifts with magnetic field and gate voltage.Comment: 4 pages, 4 figure

    Transient Charging and Discharging of Spin-polarized Electrons in a Quantum Dot

    Get PDF
    We study spin-polarized transient transport in a quantum dot coupled to two ferromagnetic leads subjected to a rectangular bias voltage pulse. Time-dependent spin-resolved currents, occupations, spin accumulation, and tunneling magnetoresistance (TMR) are calculated using both nonequilibrium Green function and master equation techniques. Both parallel and antiparallel leads' magnetization alignments are analyzed. Our main findings are: a dynamical spin accumulation that changes sign in time, a short-lived pulse of spin polarized current in the emitter lead (but not in the collector lead), and a dynamical TMR that develops negative values in the transient regime. We also observe that the intra-dot Coulomb interaction can enhance even further the negative values of the TMR.Comment: 7 pages, 6 figures. Typos corrections corresponding to the published versio

    Effective Hamiltonian for Excitons with Spin Degrees of Freedom

    Full text link
    Starting from the conventional electron-hole Hamiltonian Heh{\cal H}_{eh}, we derive an effective Hamiltonian H~1s\tilde{\cal H}_{1s} for 1s1s excitons with spin degrees of freedom. The Hamiltonian describes optical processes close to the exciton resonance for the case of weak excitation. We show that straightforward bosonization of Heh{\cal H}_{eh} does not give the correct form of H~1s\tilde{\cal H}_{1s}, which we obtain by a projection onto the subspace spanned by the 1s1s excitons. The resulting relaxation and renormalization terms generate an interaction between excitons with opposite spin. Moreover, exciton-exciton repulsive interaction is greatly reduced by the renormalization. The agreement of the present theory with the experiment supports the validity of the description of a fermionic system by bosonic fields in two dimensions.Comment: 12 pages, no figures, RevTe

    Visual acuity in larval zebrafish: behavior and histology

    Full text link
    BACKGROUND: Visual acuity, the ability of the visual system to distinguish two separate objects at a given angular distance, is influenced by the optical and neuronal properties of the visual system. Although many factors may contribute, the ultimate limit is photoreceptor spacing. In general, at least one unstimulated photoreceptor flanked by two stimulated ones is needed to perceive two objects as separate. This critical interval is also referred to as the Nyquist frequency and is according to the Shannon sampling theorem the highest spatial frequency where a pattern can be faithfully transmitted. We measured visual acuity in a behavioral experiment and compared the data to the physical limit given by photoreceptor spacing in zebrafish larvae. RESULTS: We determined visual acuity by using the optokinetic response (OKR), reflexive eye movements in response to whole field movements of the visual scene. By altering the spatial frequency we determined the visual acuity at approximately 0.16 cycles/degree (cpd) (minimum separable angle = 3.1 degrees ). On histological sections we measured the retinal magnification factor and the distance between double cones, that are thought to mediate motion perception. These measurements set the physical limit at 0.24 cpd (2.1 degrees ). CONCLUSION: The maximal spatial information as limited by photoreceptor spacing can not be fully utilized in a motion dependent visual behavior, arguing that the larval zebrafish visual system has not matured enough to optimally translate visual information into behavior. Nevertheless behavioral acuity is remarkable close to its maximal value, given the immature state of young zebrafish larvae

    Aharonov-Bohm oscillations of a tunable quantum ring

    Full text link
    With an atomic force microscope a ring geometry with self-aligned in-plane gates was directly written into a GaAs/AlGaAs-heterostructure. Transport measurements in the open regime show only one transmitting mode and Aharonov-Bohm oscillations with more than 50% modulation are observed in the conductance. The tuning via in-plane gates allows to study the Aharonov-Bohm effect in the whole range from the open ring to the Coulomb-blockade regime.Comment: 3 pages, 3 figure

    Role of bound pairs in the optical properties of highly excited semiconductors: a self consistent ladder approximation approach

    Full text link
    Presence of bound pairs (excitons) in a low-temperature electron-hole plasma is accounted for by including correlation between fermions at the ladder level. Using a simplified one-dimensional model with on-site Coulomb interaction, we calculate the one-particle self-energies, chemical potential, and optical response. The results are compared to those obtained in the Born approximation, which does not account for bound pairs. In the self-consistent ladder approximation the self-energy and spectral function show a characteristic correlation peak at the exciton energy for low temperature and density. In this regime the Born approximation overestimates the chemical potential. Provided the appropriate vertex correction in the interaction with the photon is included, both ladder and Born approximations reproduce the excitonic and free pair optical absorption at low density, and the disappearance of the exciton absorption peak at larger density. However, lineshapes and energy shifts with density of the absorption and photoluminescence peaks are drastically different. In particular, the photoluminescence emission peak is much more stable in the ladder approximation. At low temperature and density a sizeable optical gain is produced in both approximations just below the excitonic peak, however this gain shows unphysical features in the Born approximation. We conclude that at low density and temperature it is fundamental to take into account the existence of bound pairs in the electron-hole plasma for the calculation of its optical and thermodynamic properties. Other approximations that fail to do so are intrinsically unphysical in this regime, and for example are not suitable to address the problem of excitonic lasing.Comment: 14 pages, 12 figure

    Attosecond tracking of light absorption and refraction in fullerenes

    Full text link
    The collective response of matter is ubiquitous and widely exploited, e.g. in plasmonic, optical and electronic devices. Here we trace on an attosecond time scale the birth of collective excitations in a finite system and find distinct new features in this regime. Combining quantum chemical computation with quantum kinetic methods we calculate the time-dependent light absorption and refraction in fullerene that serve as indicators for the emergence of collective modes. We explain the numerically calculated novel transient features by an analytical model and point out the relevance for ultra-fast photonic and electronic applications. A scheme is proposed to measure the predicted effects via the emergent attosecond metrology.Comment: 11 pages, 3 figures, accepted in Phys. Rev.

    Dynamical scaling of the quantum Hall plateau transition

    Full text link
    Using different experimental techniques we examine the dynamical scaling of the quantum Hall plateau transition in a frequency range f = 0.1-55 GHz. We present a scheme that allows for a simultaneous scaling analysis of these experiments and all other data in literature. We observe a universal scaling function with an exponent kappa = 0.5 +/- 0.1, yielding a dynamical exponent z = 0.9 +/- 0.2.Comment: v2: Length shortened to fulfil Journal criteri
    • …
    corecore