329 research outputs found

    Statistics of selectively neutral genetic variation

    Full text link
    Random models of evolution are instrumental in extracting rates of microscopic evolutionary mechanisms from empirical observations on genetic variation in genome sequences. In this context it is necessary to know the statistical properties of empirical observables (such as the local homozygosity for instance). Previous work relies on numerical results or assumes Gaussian approximations for the corresponding distributions. In this paper we give an analytical derivation of the statistical properties of the local homozygosity and other empirical observables assuming selective neutrality. We find that such distributions can be very non-Gaussian.Comment: 4 pages, 4 figure

    Generalized Mittag-Leffler Distributions and Processes for Applications in Astrophysics and Time Series Modeling

    Full text link
    Geometric generalized Mittag-Leffler distributions having the Laplace transform 11+βlog(1+tα),00\frac{1}{1+\beta\log(1+t^\alpha)},00 is introduced and its properties are discussed. Autoregressive processes with Mittag-Leffler and geometric generalized Mittag-Leffler marginal distributions are developed. Haubold and Mathai (2000) derived a closed form representation of the fractional kinetic equation and thermonuclear function in terms of Mittag-Leffler function. Saxena et al (2002, 2004a,b) extended the result and derived the solutions of a number of fractional kinetic equations in terms of generalized Mittag-Leffler functions. These results are useful in explaining various fundamental laws of physics. Here we develop first-order autoregressive time series models and the properties are explored. The results have applications in various areas like astrophysics, space sciences, meteorology, financial modeling and reliability modeling.Comment: 12 pages, LaTe

    Publisher Correction Turning charge density waves into Cooper pairs

    Get PDF
    An amendment to this paper has been published and can be accessed via a link at the top of the paper.Y

    Triple‐crystal x‐ray diffraction analysis of reactive ion etched gallium arsenide

    Get PDF
    This is the published version. Copyright 1994 American Institute of PhysicsThe effect of BCl3 reactive ion etching on the structural perfection of GaAs has been studied with diffuse x‐ray scattering measurementsconducted by high‐resolution triple‐crystal x‐ray diffraction. While using a symmetric 004 diffraction geometry revealed no discernible differences between etched and unetched samples, using the more surface‐sensitive and highly asymmetric 113 reflection revealed that the reactive ion etched samples etched displayed less diffusely scattered intensity than unetched samples, indicating a higher level of structural perfection. Increasing the reaction ion etch bias voltage was found to result in decreased diffuse scattering initially, until an apparent threshold voltage was reached, after which no further structural improvement was observed. Furthermore, we have shown that this reduction in process‐induced surfacestructural damage is not due merely to the removal of residual chemical‐mechanical polishing damage

    Analysis of the potential of cancer cell lines to release tissue factor-containing microvesicles: correlation with tissue factor and PAR2 expression

    Get PDF
    BackgroundDespite the association of cancer-derived circulating tissue factor (TF)-containing microvesicles and hypercoagulable state, correlations with the incidence of thrombosis remain unclear.MethodsIn this study the upregulation of TF release upon activation of various cancer cell lines, and the correlation with TF and PAR2 expression and/or activity was examined. Microvesicle release was induced by PAR2 activation in seventeen cell lines and released microvesicle density, microvesicle-associated TF activity, and phoshpatidylserine-mediated activity were measured. The time-course for TF release was monitored over 90 min in each cell line. In addition, TF mRNA expression, cellular TF protein and cell-surface TF activities were quantified. Moreover, the relative expression of PAR2 mRNA and cellular protein were analysed. Any correlations between the above parameters were examined by determining the Pearson’s correlation coefficients.ResultsTF release as microvesicles peaked between 30–60 min post-activation in the majority of cell lines tested. The magnitude of the maximal TF release positively correlated with TF mRNA (c = 0.717; p
    corecore