1,143 research outputs found
GASP II. A MUSE view of extreme ram-pressure stripping along the line of sight: kinematics of the jellyfish galaxy JO201
This paper presents a spatially-resolved kinematic study of the jellyfish
galaxy JO201, one of the most spectacular cases of ram-pressure stripping (RPS)
in the GASP (GAs Stripping Phenomena in Galaxies with MUSE) survey. By studying
the environment of JO201, we find that it is moving through the dense
intra-cluster medium of Abell 85 at supersonic speeds along our line of sight,
and that it is likely accompanied by a small group of galaxies. Given the
density of the intra-cluster medium and the galaxy's mass, projected position
and velocity within the cluster, we estimate that JO201 must so far have lost
~50% of its gas during infall via RPS. The MUSE data indeed reveal a smooth
stellar disk, accompanied by large projected tails of ionised (Halpha) gas,
composed of kinematically cold (velocity dispersion <40km/s) star-forming knots
and very warm (>100km/s) diffuse emission which extend out to at least ~50 kpc
from the galaxy centre. The ionised Halpha-emitting gas in the disk rotates
with the stars out to ~6 kpc but in the disk outskirts becomes increasingly
redshifted with respect to the (undisturbed) stellar disk. The observed
disturbances are consistent with the presence of gas trailing behind the
stellar component, resulting from intense face-on RPS happening along the line
of sight. Our kinematic analysis is consistent with the estimated fraction of
lost gas, and reveals that stripping of the disk happens outside-in, causing
shock heating and gas compression in the stripped tails.Comment: ApJ, revised version after referee comments, 15 pages, 16 figures.
The interactive version of Figure 9 can be viewed at
web.oapd.inaf.it/gasp/publications.htm
Parametric Self-Oscillation via Resonantly Enhanced Multiwave Mixing
We demonstrate an efficient nonlinear process in which Stokes and anti-Stokes
components are generated spontaneously in a Raman-like, near resonant media
driven by low power counter-propagating fields. Oscillation of this kind does
not require optical cavity and can be viewed as a spontaneous formation of
atomic coherence grating
Ultrahigh sensitivity of slow-light gyroscope
Slow light generated by Electromagnetically Induced Transparency is extremely
susceptible with respect to Doppler detuning. Consequently, slow-light
gyroscopes should have ultrahigh sensitivity
Nonlinear Optics and Quantum Entanglement of Ultra-Slow Single Photons
Two light pulses propagating with ultra-slow group velocities in a coherently
prepared atomic gas exhibit dissipation-free nonlinear coupling of an
unprecedented strength. This enables a single-photon pulse to coherently
control or manipulate the quantum state of the other. Processes of this kind
result in generation of entangled states of radiation field and open up new
prospectives for quantum information processing
Relativistic Effects of Light in Moving Media with Extremely Low Group Velocity
A moving dielectric medium acts as an effective gravitational field on light.
One can use media with extremely low group velocities [Lene Vestergaard Hau et
al., Nature 397, 594 (1999)] to create dielectric analogs of astronomical
effects on Earth. In particular, a vortex flow imprints a long-ranging
topological effect on incident light and can behave like an optical black hole.Comment: Physical Review Letters (accepted
Steep anomalous dispersion in coherently prepared Rb vapor
Steep dispersion of opposite signs in driven degenerate two-level atomic
transitions have been predicted and observed on the D2 line of 87Rb in an
optically thin vapor cell. The intensity dependence of the anomalous dispersion
has been studied. The maximum observed value of anomalous dispersion [dn/dnu ~=
-6x10^{-11}Hz^{-1}] corresponds to anegative group velocity V_g ~= -c/23000.Comment: 4 pages, 4 figure
Bichromatic electromagnetically induced transparency in cold rubidium atoms
In a three-level atomic system coupled by two equal-amplitude laser fields
with a frequency separation 2, a weak probe field exhibits a
multiple-peaked absorption spectrum with a constant peak separation .
The corresponding probe dispersion exhibits steep normal dispersion near the
minimum absorption between the multiple absorption peaks, which leads to
simultaneous slow group velocities for probe photons at multiple frequencies
separated by . We report an experimental study in such a
bichromatically coupled three-level system in cold Rb atoms.
The multiple-peaked probe absorption spectra under various experimental
conditions have been observed and compared with the theoretical calculations.Comment: RevTex, 4 pages, 6 figures, Email address: [email protected]
Light Rays at Optical Black Holes in Moving Media
Light experiences a non-uniformly moving medium as an effective gravitational
field, endowed with an effective metric tensor , being the refractive index and the
four-velocity of the medium. Leonhardt and Piwnicki [Phys. Rev. A {\bf 60},
4301 (1999)] argued that a flowing dielectric fluid of this kind can be used to
generate an 'optical black hole'. In the Leonhardt-Piwnicki model, only a
vortex flow was considered. It was later pointed out by Visser [Phys. Rev.
Lett. {\bf 85}, 5252 (2000)] that in order to form a proper optical black hole
containing an event horizon, it becomes necessary to add an inward radial
velocity component to the vortex flow. In the present paper we undertake this
task: we consider a full spiral flow, consisting of a vortex component plus a
radially infalling component. Light propagates in such a dielectric medium in a
way similar to that occurring around a rotating black hole. We calculate, and
show graphically, the effective potential versus the radial distance from the
vortex singularity, and show that the spiral flow can always capture light in
both a positive, and a negative, inverse impact parameter interval. The
existence of a genuine event horizon is found to depend on the strength of the
radial flow, relative to the strength of the azimuthal flow. A limitation of
our fluid model is that it is nondispersive.Comment: 30 pages, LaTeX, 4 ps figures. Expanded discussion especially in
section 6; 5 new references. Version to appear in Phys. Rev.
- …