8 research outputs found

    In-silico insights on the prognostic potential of immune cell infiltration patterns in the breast lobular epithelium

    Get PDF
    Scattered inflammatory cells are commonly observed in mammary gland tissue, most likely in response to normal cell turnover by proliferation and apoptosis, or as part of immunosurveillance. In contrast, lymphocytic lobulitis (LLO) is a recurrent inflammation pattern, characterized by lymphoid cells infiltrating lobular structures, that has been associated with increased familial breast cancer risk and immune responses to clinically manifest cancer. The mechanisms and pathogenic implications related to the inflammatory microenvironment in breast tissue are still poorly understood. Currently, the definition of inflammation is mainly descriptive, not allowing a clear distinction of LLO from physiological immunological responses and its role in oncogenesis remains unclear. To gain insights into the prognostic potential of inflammation, we developed an agent-based model of immune and epithelial cell interactions in breast lobular epithelium. Physiological parameters were calibrated from breast tissue samples of women who underwent reduction mammoplasty due to orthopedic or cosmetic reasons. The model allowed to investigate the impact of menstrual cycle length and hormone status on inflammatory responses to cell turnover in the breast tissue. Our findings suggested that the immunological context, defined by the immune cell density, functional orientation and spatial distribution, contains prognostic information previously not captured by conventional diagnostic approaches. Several studies provided conclusive evidence that a delicate balance between mammary epithelial cell proliferation and apoptosis regulates homeostasis in the healthy breast tissue 1-7. After menarche, and in the absence of pregnancy, the adult female mammary gland is subjected to cyclic fluctuations depending on hormonal stimulation 1,8. In response to such systemic hormonal changes, the breast epithelium undergoes a tightly regulated sequence of cell proliferation and apoptosis during each ovarian/menstrual cycle 1-3. The peak of epithelial cell proliferation has been reported to occur during the luteal phase, suggesting a synergistic influence of steroid hormones, such as estrogen and progesterone 2-5. In turn, the peak of apoptotic activity would be expected in response to decreasing hormone levels towards the end of the menstrual cycle 2-5. However, recent histologic findings indicate that apoptosis reaches its maximum levels in the middle of the luteal phase, although there is also a peak at about the third day of the menstrual cycle 6,7. Experimental measurements of cell turnover, i.e. programmed cell death and proliferation, demonstrated that an imbalance between the mitotic and apoptotic activity might lead to malignant transformation of epithelial cells and tumorigenic processes 9-11. Indeed, excessive cell proliferation promotes accumulation of DNA damage due to insufficient timely repair and mutations 12,13. There is also recent evidence that hormones suppress effective DNA repair and alter DNA damage response (DDR) 13-15

    Image analysis of immune cell patterns in the human mammary gland during the menstrual cycle refines lymphocytic lobulitis.

    Get PDF
    Purpose: To improve microscopic evaluation of immune cells relevant in breast cancer oncoimmunology, we aim at distinguishing normal infiltration patterns from lymphocytic lobulitis by advanced image analysis. We consider potential immune cell variations due to the menstrual cycle and oral contraceptives in non-neoplastic mammary gland tissue. METHODS: Lymphocyte and macrophage distributions were analyzed in the anatomical context of the resting mammary gland in immunohistochemically stained digital whole slide images obtained from 53 reduction mammoplasty specimens. Our image analysis workflow included automated regions of interest detection, immune cell recognition, and co-registration of regions of interest. RESULTS: In normal lobular epithelium, seven CD8[Formula: see text] lymphocytes per 100 epithelial cells were present on average and about 70% of this T-lymphocyte population was lined up along the basal cell layer in close proximity to the epithelium. The density of CD8[Formula: see text] T-cell was 1.6 fold higher in the luteal than in the follicular phase in spontaneous menstrual cycles and 1.4 fold increased under the influence of oral contraceptives, and not co-localized with epithelial proliferation. CD4[Formula: see text] T-cells were infrequent. Abundant CD163[Formula: see text] macrophages were widely spread, including the interstitial compartment, with minor variation during the menstrual cycle. CONCLUSIONS: Spatial patterns of different immune cell subtypes determine the range of normal, as opposed to inflammatory conditions of the breast tissue microenvironment. Advanced image analysis enables quantification of hormonal effects, refines lymphocytic lobulitis, and shows potential for comprehensive biopsy evaluation in oncoimmunolo

    Mathematical oncology:how are the mathematical and physical sciences contributing to the war on breast cancer?

    Get PDF
    Mathematical modeling has recently been added as a tool in the fight against cancer. The field of mathematical oncology has received great attention and increased enormously, but over-optimistic estimations about its ability have created unrealistic expectations. We present a critical appraisal of the current state of mathematical models of cancer. Although the field is still expanding and useful clinical applications may occur in the future, managing over-expectation requires the proposal of alternative directions for mathematical modeling. Here, we propose two main avenues for this modeling: 1) the identification of the elementary biophysical laws of cancer development, and 2) the development of a multiscale mathematical theory as the framework for models predictive of tumor growth. Finally, we suggest how these new directions could contribute to addressing the current challenges of understanding breast cancer growth and metastasis
    corecore