22 research outputs found
On the Influence of the Prevailing Weather Regime on the Atmospheric Pollution Levels in the City of Ioannina
The dependence of the atmospheric pollution levels on the synoptic conditions and the associated prevailing weather regimes over Ioannina was examined for the 3-year period of 15 February 2019–14 February 2022. The study period is constrained by the availability of quality local air (particulate and gaseous) pollution measurements. The data used consist of (1) daily grid point values of the main meteorological parameters over the geographical domains of southeastern Europe and the greater Epirus region, obtained from ERA5 Reanalysis database and (2) hourly values of the main meteorological parameters and the concentration of basic pollutants recorded at the automatic environmental station of the Epirus Region located at the center of Ioannina. At first, 12 Weather Types (WTs) were defined on daily basis by applying a multivariate statistical methodology including Factor Analysis and k-means Cluster Analysis of the meteorological data. Next, for each WT, the average values, the standard deviations and the mean diurnal variations in the pollutant concentrations were calculated. According to the results, it appears that almost all pollutant concentrations were considerably higher during two anticyclonic WTs prevailing in the cold period of the year, while the diurnal variations in the concentrations were affected by the diurnal variations in traffic, combustion processes and solar radiation. The exact influence of the above factors depends on the characteristics of the prevailing WT
A Climatological Assessment of Intense Desert Dust Episodes over the Broader Mediterranean Basin Based on Satellite Data
A satellite algorithm able to identify Dust Aerosols (DA) is applied for a climatological investigation of Dust Aerosol Episodes (DAEs) over the greater Mediterranean Basin (MB), one of the most climatologically sensitive regions of the globe. The algorithm first distinguishes DA among other aerosol types (such as Sea Salt and Biomass Burning) by applying threshold values on key aerosol optical properties describing their loading, size and absorptivity, namely Aerosol Optical Depth (AOD), Aerosol Index (AI) and Ångström Exponent (α). The algorithm operates on a daily and 1° × 1° geographical cell basis over the 15-year period 2005–2019. Daily gridded spectral AOD data are taken from Moderate Resolution Imaging Spectroradiometer (MODIS) Aqua Collection 6.1, and are used to calculate the α data, which are then introduced into the algorithm, while AI data are obtained by the Ozone Monitoring Instrument (OMI) -Aura- Near-UV aerosol product OMAERUV dataset. The algorithm determines the occurrence of Dust Aerosol Episode Days (DAEDs), whenever high loads of DA (higher than their climatological mean value plus two/four standard deviations for strong/extreme DAEDs) exist over extended areas (more than 30 pixels or 300,000 km2). The identified DAEDs are finally grouped into Dust Aerosol Episode Cases (DAECs), consisting of at least one DAED. According to the algorithm results, 166 (116 strong and 50 extreme) DAEDs occurred over the MB during the study period. DAEDs are observed mostly in spring (47%) and summer (38%), with strong DAEDs occurring primarily in spring and summer and extreme ones in spring. Decreasing, but not statistically significant, trends of the frequency, spatial extent and intensity of DAECs are revealed. Moreover, a total number of 98 DAECs was found, primarily in spring (46 DAECs) and secondarily in summer (36 DAECs). The seasonal distribution of the frequency of DAECs varies geographically, being highest in early spring over the eastern Mediterranean, in late spring over the central Mediterranean and in summer over the western MB
Emission of volatile organic compounds from residential biomass burning and their rapid chemical transformations
Biomass combustion releases a complex array of Volatile Organic Compounds (VOCs) that pose significant challenges to air quality and human health. Although biomass burning has been extensively studied at ecosystem levels, understanding the atmospheric transformation and impact on air quality of emissions in urban environments remains challenging due to complex sources and burning materials. In this study, we investigate the VOC emission rates and atmospheric chemical processing of predominantly wood burning emissions in a small urban centre in Greece. Ioannina is situated in a valley within the Dinaric Alps and experiences intense atmospheric pollution accumulation during winter due to its topography and high wood burning activity. During pollution event days, the ambient mixing ratios of key VOC species were found to be similar to those reported for major urban centres worldwide. Positive matrix factorisation (PMF) analysis revealed that biomass burning was the dominant emission source (>50 %), representing two thirds of OH reactivity, which indicates a highly reactive atmospheric mixture. Calculated OH reactivity ranges from 5 s−1 to an unprecedented 278 s−1, and averages at 93 ± 66 s−1 at 9 PM, indicating the presence of exceptionally reactive VOCs. The highly pronounced photochemical formation of organic acids coincided with the formation of ozone, highlighting the significance of secondary formation of pollutants in poorly ventilated urban areas. Our findings underscore the pressing need to transition from wood burning to environmentally friendly sources of energy in poorly ventilated urban areas, in order to improve air quality and safeguard public health
A Global Climatology of Dust Aerosols Based on Satellite Data: Spatial, Seasonal and Inter-Annual Patterns over the Period 2005–2019
A satellite-based algorithm is developed and used to determine the presence of dust aerosols on a global scale. The algorithm uses as input aerosol optical properties from the MOderate Resolution Imaging Spectroradiometer (MODIS)-Aqua Collection 6.1 and Ozone Monitoring Instrument (OMI)-Aura version v003 (OMAER-UV) datasets and identifies the existence of dust aerosols in the atmosphere by applying specific thresholds, which ensure the coarse size and the absorptivity of dust aerosols, on the input optical properties. The utilized aerosol optical properties are the multiwavelength aerosol optical depth (AOD), the Aerosol Absorption Index (AI) and the Ångström Exponent (a). The algorithm operates on a daily basis and at 1° × 1° latitude-longitude spatial resolution for the period 2005–2019 and computes the absolute and relative frequency of the occurrence of dust. The monthly and annual mean frequencies are calculated on a pixel level for each year of the study period, enabling the study of the seasonal as well as the inter-annual variation of dust aerosols’ occurrence all over the globe. Temporal averaging is also applied to the annual values in order to estimate the 15-year climatological mean values. Apart from temporal, a spatial averaging is also applied for the entire globe as well as for specific regions of interest, namely great global deserts and areas of desert dust export. According to the algorithm results, the highest frequencies of dust occurrence (up to 160 days/year) are primarily observed over the western part of North Africa (Sahara), and over the broader area of Bodélé, and secondarily over the Asian Taklamakan desert (140 days/year). For most of the study regions, the maximum frequencies appear in boreal spring and/or summer and the minimum ones in winter or autumn. A clear seasonality of global dust is revealed, with the lowest frequencies in November–December and the highest ones in June. Finally, an increasing trend of global dust frequency of occurrence from 2005 to 2019, equal to 56.2%, is also found. Such an increasing trend is observed over all study regions except for North Middle East, where a slight decreasing trend (−2.4%) is found
Global Clear-Sky Aerosol Speciated Direct Radiative Effects over 40 Years (1980–2019)
We assess the 40-year climatological clear-sky global direct radiative effect (DRE) of five main aerosol types using the MERRA-2 reanalysis and a spectral radiative transfer model (FORTH). The study takes advantage of aerosol-speciated, spectrally and vertically resolved optical properties over the period 1980–2019, to accurately determine the aerosol DREs, emphasizing the attribution of the total DREs to each aerosol type. The results show that aerosols radiatively cool the Earth’s surface and heat its atmosphere by 7.56 and 2.35 Wm−2, respectively, overall cooling the planet by 5.21 Wm−2, partly counterbalancing the anthropogenic greenhouse global warming during 1980–2019. These DRE values differ significantly in terms of magnitude, and even sign, among the aerosol types (sulfate and black carbon aerosols cool and heat the planet by 1.88 and 0.19 Wm−2, respectively), the hemispheres (larger NH than SH values), the surface cover type (larger land than ocean values) or the seasons (larger values in local spring and summer), while considerable inter-decadal changes are evident. These DRE differences are even larger by up to an order of magnitude on a regional scale, highlighting the important role of the aerosol direct radiative effect for local and global climate
Correction: Korras-Carraca et al. Global Clear-Sky Aerosol Speciated Direct Radiative Effects over 40 Years (1980–2019). <i>Atmosphere</i> 2021, <i>12</i>, 1254
There was an error in the original publication [...
Correction: Korras-Carraca et al. Global Clear-Sky Aerosol Speciated Direct Radiative Effects over 40 Years (1980–2019). Atmosphere 2021, 12, 1254
There was an error in the original publication [...
Carbonaceous aerosols in contrasting atmospheric environments in Greek cities
This study examines the carbonaceous-aerosol characteristics at three contrasting urban environments in Greece (Ioannina, Athens, and Heraklion), on the basis of 12 h sampling during winter (January to February 2013), aiming to explore the inter-site differences in atmospheric composition and carbonaceous-aerosol characteristics and sources. The winter-average organic carbon (OC) and elemental carbon (EC) concentrations in Ioannina were found to be 28.50 and 4.33 µg m−3, respectively, much higher than those in Heraklion (3.86 µg m−3 for OC and 2.29 µg m−3 for EC) and Athens (7.63 µg m−3 for OC and 2.44 µg m−3 for EC). The winter OC/EC ratio in Ioannina (6.53) was found to be almost three times that in Heraklion (2.03), indicating a larger impact of wood combustion, especially during the night, whereas in Heraklion, emissions from biomass burning were found to be less intense. Estimations of primary and secondary organic carbon (POC and SOC) using the EC-tracer method, and specifically its minimum R-squared (MRS) variant, revealed large differences between the sites, with a prevalence of POC (67–80%) in Ioannina and Athens and with a larger SOC fraction (53%) in Heraklion. SOC estimates were also obtained using the 5% and 25% percentiles of the OC/EC data to determine the (OC/EC)pri, leading to results contrasting to the MRS approach in Ioannina (70–74% for SOC). Although the MRS method provides generally more robust results, it may significantly underestimate SOC levels in environments highly burdened by biomass burning, as the fast-oxidized semi-volatile OC associated with combustion sources is classified in POC. Further analysis in Athens revealed that the difference in SOC estimates between the 5% percentile and MRS methods coincided with the semi-volatile oxygenated organic aerosol as quantified by aerosol mass spectrometry. Finally, the OC/Kbb+ ratio was used as tracer for decomposition of the POC into fossil-fuel and biomass-burning components, indicating the prevalence of biomass-burning POC, especially in Ioannina (77%)
Vertical profiling of fresh biomass burning aerosol optical properties over the Greek urban city of Ioannina, during the PANACEA winter campaign
Vertical profiling of aerosol particles was performed during the PANhellenic infrastructure for Atmospheric Composition and climatE chAnge (PANACEA) winter campaign (10 January 2020–7 February 2020) over the city of Ioannina, Greece (39.65° N, 20.85° E, 500 m a.s.l.). The middle-sized city of Ioannina suffers from wintertime air pollution episodes due to biomass burning (BB) domestic heating activities. The lidar technique was applied during the PANACEA winter campaign on Ioannina city, to fill the gap of knowledge of the spatio-temporal evolution of the vertical mixing of the particles occurring during these winter-time air pollution episodes. During this campaign the mobile single-wavelength (532 nm) depolarization Aerosol lIdAr System (AIAS) was used to measure the spatio-temporal evolution of the aerosols’ vertical profiles within the Planetary Boundary Layer (PBL) and the lower free troposphere (LFTup to 4 km height a.s.l.). AIAS performed almost continuous lidar measurements from morning to late evening hours (typically from 07:00 to 19:00 UTC), under cloud-free conditions, to provide the vertical profiles of the aerosol backscatter coefficient (baer) and the particle linear depolarization ratio (PLDR), both at 532 nm. In this study we emphasized on the vertical profiling of very fresh (~hours) biomass burning (BB) particles originating from local domestic heating activities in the area. In total, 33 out of 34 aerosol layers in the lower free troposphere were characterized as fresh biomass burning ones of local origin, showing a mean particle linear depolarization value of 0.04 ± 0.02 with a range of 0.01 to 0.09 (532 nm) in a height region 1.21–2.23 km a.s.l. To corroborate our findings, we used in situ data, particulate matter (PM) concentrations (PM2.5) from a particulate sensor located close to our station, and the total black carbon (BC) concentrations along with the respective contribution of the fossil fuel (BCff) and biomass/wood burning (BCwb) from the Aethalometer. The PM2.5 mass concentrations ranged from 5.6 to 175.7 μg/m3, while the wood burning emissions from residential heating were increasing during the evening hours, with decreasing temperatures. The BCwb concentrations ranged from 0.5 to 17.5 μg/m3, with an extremely high mean contribution of BCwb equal to 85.4%, which in some cases during night-time reached up to 100% during the studied period
Field Evaluation of Low-Cost PM Sensors (Purple Air PA-II) Under Variable Urban Air Quality Conditions, in Greece
Recent advances in particle sensor technologies have led to an increased development and utilization of low-cost, compact, particulate matter (PM) monitors. These devices can be deployed in dense monitoring networks, enabling an improved characterization of the spatiotemporal variability in ambient levels and exposure. However, the reliability of their measurements is an important prerequisite, necessitating rigorous performance evaluation and calibration in comparison to reference-grade instrumentation. In this study, field evaluation of Purple Air PA-II devices (low-cost PM sensors) is performed in two urban environments and across three seasons in Greece, in comparison to different types of reference instruments. Measurements were conducted in Athens (the largest city in Greece with nearly four-million inhabitants) for five months spanning over the summer of 2019 and winter/spring of 2020 and in Ioannina, a medium-sized city in northwestern Greece (100,000 inhabitants) during winter/spring 2019–2020. The PM2.5 sensor output correlates strongly with reference measurements (R2 = 0.87 against a beta attenuation monitor and R2 = 0.98 against an optical reference-grade monitor). Deviations in the sensor-reference agreement are identified as mainly related to elevated coarse particle concentrations and high ambient relative humidity. Simple and multiple regression models are tested to compensate for these biases, drastically improving the sensor’s response. Large decreases in sensor error are observed after implementation of models, leading to mean absolute percentage errors of 0.18 and 0.12 for the Athens and Ioannina datasets, respectively. Overall, a quality-controlled and robustly evaluated low-cost network can be an integral component for air quality monitoring in a smart city. Case studies are presented along this line, where a network of PA-II devices is used to monitor the air quality deterioration during a peri-urban forest fire event affecting the area of Athens and during extreme wintertime smog events in Ioannina, related to wood burning for residential heating