169 research outputs found
Rikkunshito and Ghrelin
Rikkunshito is a popular Japanese traditional medicine that is prescribed in Japan to treat various gastrointestinal tract disorders. In a double-blind controlled study, rikkunshito significantly ameliorated dysmotility-like dyspepsia and brought about a generalized improvement in upper gastric symptoms such as nausea and anorexia when compared with a control group. Several studies in rats have shown enhanced gastric emptying and a protective effect on gastric mucosa injury with rikkunshito administration. In addition, rikkunshito in combination with an anti-emetic drug is effective against anorexia and vomiting that occur as adverse reactions to chemotherapy in patients with advanced breast cancer. However, the mechanism by which rikkunshito alleviates gastrointestinal disorders induced by anticancer agents remains unclear. It has recently been shown that rikkunshito ameliorates cisplatin-induced anorexia by mediating an increase in the circulating ghrelin concentration. Moreover, Fujitsuka et al. found that decreased contractions of the antrum and duodenum in rats treated with a selective serotonin reuptake inhibitor were reversed by rikkunshito via enhancement of the circulating ghrelin concentration. These findings show that rikkunshito may be useful for treatment of anorexia and may provide a new strategy for improvement of upper gastrointestinal dysfunction
Urocortin1-induced anorexia is regulated by activation of the serotonin 2C receptor in the brain
AbstractThis study was conducted to determine the mechanisms by which serotonin (5-hydroxytryptamine, 5-HT) receptors are involved in the suppression of food intake in a rat stress model and to observe the degree of activation in the areas of the brain involved in feeding. In the stress model, male Sprague–Dawley rats (8 weeks old) were given intracerebroventricular injections of urocortin (UCN) 1. To determine the role of the 5-HT2c receptor (5-HT2cR) in the decreased food intake in UCN1-treated rats, specific 5-HT2cR or 5-HT2b receptor (5-HT2bR) antagonists were administered. Food intake was markedly reduced in UCN1-injected rats compared with phosphate buffered saline treated control rats. Intraperitoneal administration of a 5-HT2cR antagonist, but not a 5-HT2bR antagonist, significantly inhibited the decreased food intake. To assess the involvement of neural activation, we tracked the expression of c-fos mRNA as a neuronal activation marker. Expression of the c-fos mRNA in the arcuate nucleus, ventromedial hypothalamic nucleus (VMH) and rostral ventrolateral medulla (RVLM) in UNC1-injected rats showed significantly higher expression than in the PBS-injected rats. Increased c-fos mRNA was also observed in the paraventricular nucleus (PVN), the nucleus of the solitary tract (NTS), and the amygdala (AMG) after injection of UCN1. Increased 5-HT2cR protein expression was also observed in several areas. However, increased coexpression of 5-HT2cR and c-fos was observed in the PVN, VMH, NTS, RVLM and AMG. Whereas, pro-opiomelanocortin mRNA expression was not changed. In an UNC1-induced stress model, 5-HT2cR expression and activation was found in brain areas involved in feeding control
Rikkunshito Ameliorates Cancer Cachexia Partly through Elevation of Glucarate in Plasma
Cancer cachexia, which is characterized by decreased food intake, weight loss and systemic inflammation, increases patient’s morbidity and mortality. We previously showed that rikkunshito (RKT), a Japanese traditional herbal medicine (Kampo), ameliorated the symptoms of cancer cachexia through ghrelin signaling-dependent and independent pathways. To investigate other mechanisms of RKT action in cancer cachexia, we performed metabolome analysis of plasma in a rat model bearing the Yoshida AH-130 hepatoma. A total of 110 metabolites were detected in plasma and RKT treatment significantly altered levels of 23 of those metabolites in cachexia model rats. Among them, glucarate, which is known to have anticarcinogenic activity through detoxification of carcinogens via inhibition of β-glucuronidase, was increased in plasma following administration of RKT. In our AH-130 ascites-induced cachexia rat model, administration of glucarate delayed onset of weight loss, improved muscle atrophy, and reduced ascites content. Additionally, glucarate reduced levels of plasma interferon-γ (IFN-γ) in tumor-bearing rats and was also found to suppress LPS-induced IFN-γ expression in splenocytes in vitro. These results suggest that glucarate has anti-inflammatory activity via a direct effect on immune host cells and suggest that RKT may also ameliorate inflammation partly through the elevation of glucarate in plasma
Peripheral α2-β1 adrenergic interactions mediate the ghrelin response to brain urocortin 1 in rats
SummaryThe autonomic nervous system (ANS) conveys neuronal input from the brain to the stomach. We investigated mechanisms through which urocortin 1 (UCN1) injected intracerebroventricularly (ICV, 300pmol/rat) inhibits circulating ghrelin in rats. This was achieved by assessing (1) the induction of c-fos gene expression as a marker of neuronal activation in specific hypothalamic and caudal brainstem regulating ANS; (2) the influence of vagotomy and pharmacological blockade of central and peripheral α- and β-adrenergic receptor (AR) on ICV UCN1-induced reduction of plasma ghrelin levels (determined by ELISA); and (3) the relevance of this pathway in the feeding response to a fast in rats. UCN1 increased c-fos mRNA expression in key brain sites influencing sympathetic activity namely the hypothalamic paraventricular and ventromedial nuclei, locus coeruleus, nucleus of the solitary tract, and rostral ventrolateral medulla, by 16-, 29-, 6-, 37-, and 13-fold, respectively. In contrast, the dorsal motor nucleus of the vagus had little c-fos mRNA expression and ICV UCN1 induced a similar reduction in acylated ghrelin in the sham-operated (31%) and vagotomized (41%) rats. An intraperitoneal (IP) injection of either a non-selective α- or selective α2-AR antagonist reduced, while a selective α2-AR agonist enhanced ICV UCN1-induced suppression of plasma acylated ghrelin levels. In addition, IP injection of a non-selective β- or selective β1-AR agonist blocked, and selective β1-AR antagonist augmented, the ghrelin response to ICV UCN1. The IP injections of a selective α1- or non-selective β or β2-AR antagonists, or any of the pretreatments given ICV had no effect. ICV UCN1 reduced the 2-h food intake in response to a fast by 80%, and this effect was partially prevented by a selective α2-AR antagonist. These data suggest that ICV UCN1 reduces plasma ghrelin mainly through the brain sympathetic component of the ANS and peripheral AR specifically α2-AR activation and inactivation of β1-AR. The α2-AR pathway contributes to the associated reduction in food intake
Alternative mRNA Splicing in Three Venom Families Underlying a Possible Production of Divergent Venom Proteins of the Habu Snake, Protobothrops flavoviridis
Snake venoms are complex mixtures of toxic proteins encoded by various gene families that function synergistically to incapacitate prey. A huge repertoire of snake venom genes and proteins have been reported, and alternative splicing is suggested to be involved in the production of divergent gene transcripts. However, a genome-wide survey of the transcript repertoire and the extent of alternative splicing still remains to be determined. In this study, the comprehensive analysis of transcriptomes in the venom gland was achieved by using PacBio sequencing. Extensive alternative splicing was observed in three venom protein gene families, metalloproteinase (MP), serine protease (SP), and vascular endothelial growth factors (VEGF). Eleven MP and SP genes and a VEGF gene are expressed as a total of 81, 61, and 8 transcript variants, respectively. In the MP gene family, individual genes are transcribed into different classes of MPs by alternative splicing. We also observed trans-splicing among the clustered SP genes. No other venom genes as well as non-venom counterpart genes exhibited alternative splicing. Our results thus indicate a potential contribution of mRNA alternative and trans-splicing in the production of highly variable transcripts of venom genes in the habu snake
Deconstructing the traditional Japanese medicine “Kampo”: compounds, metabolites and pharmacological profile of maoto, a remedy for flu-like symptoms
Pharmacological activities of the traditional Japanese herbal medicine (Kampo) are putatively mediated by complex interactions between multiple herbal compounds and host factors, which are difficult to characterize via the reductive approach of purifying major bioactive compounds and elucidating their mechanisms by conventional pharmacology. Here, we performed comprehensive compound, pharmacological and metabolomic analyses of maoto, a pharmaceutical-grade Kampo prescribed for flu-like symptoms, in normal and polyI:C-injected rats, the latter suffering from acute inflammation via Toll-like receptor 3 activation. In total, 352 chemical composition-determined compounds (CCDs) were detected in maoto extract by mass spectrometric analysis. After maoto treatment, 113 CCDs were newly detected in rat plasma. Of these CCDs, 19 were present in maoto extract, while 94 were presumed to be metabolites generated from maoto compounds or endogenous substances such as phospholipids. At the phenotypic level, maoto ameliorated the polyI:C-induced decrease in locomotor activity and body weight; however, body weight was not affected by individual maoto components in isolation. In accordance with symptom relief, maoto suppressed TNF-α and IL-1β, increased IL-10, and altered endogenous metabolites related to sympathetic activation and energy expenditure. Furthermore, maoto decreased inflammatory prostaglandins and leukotrienes, and increased anti-inflammatory eicosapentaenoic acid and hydroxyl-eicosapentaenoic acids, suggesting that it has differential effects on eicosanoid metabolic pathways involving cyclooxygenases, lipoxygenases and cytochrome P450s. Collectively, these data indicate that extensive profiling of compounds, metabolites and pharmacological phenotypes is essential for elucidating the mechanisms of herbal medicines, whose vast array of constituents induce a wide range of changes in xenobiotic and endogenous metabolism
First Data Release of the Hyper Suprime-Cam Subaru Strategic Program
The Hyper Suprime-Cam Subaru Strategic Program (HSC-SSP) is a three-layered
imaging survey aimed at addressing some of the most outstanding questions in
astronomy today, including the nature of dark matter and dark energy. The
survey has been awarded 300 nights of observing time at the Subaru Telescope
and it started in March 2014. This paper presents the first public data release
of HSC-SSP. This release includes data taken in the first 1.7 years of
observations (61.5 nights) and each of the Wide, Deep, and UltraDeep layers
covers about 108, 26, and 4 square degrees down to depths of i~26.4, ~26.5, and
~27.0 mag, respectively (5sigma for point sources). All the layers are observed
in five broad bands (grizy), and the Deep and UltraDeep layers are observed in
narrow bands as well. We achieve an impressive image quality of 0.6 arcsec in
the i-band in the Wide layer. We show that we achieve 1-2 per cent PSF
photometry (rms) both internally and externally (against Pan-STARRS1), and ~10
mas and 40 mas internal and external astrometric accuracy, respectively. Both
the calibrated images and catalogs are made available to the community through
dedicated user interfaces and database servers. In addition to the pipeline
products, we also provide value-added products such as photometric redshifts
and a collection of public spectroscopic redshifts. Detailed descriptions of
all the data can be found online. The data release website is
https://hsc-release.mtk.nao.ac.jp/.Comment: 34 pages, 20 figures, 7 tables, moderate revision, accepted for
publication in PAS
The habu genome reveals accelerated evolution of venom protein genes
Evolution of novel traits is a challenging subject in biological research. Several snake lineages developed elaborate venom systems to deliver complex protein mixtures for prey capture. To understand mechanisms involved in snake venom evolution, we decoded here the ~1.4-Gb genome of a habu, Protobothrops flavoviridis. We identified 60 snake venom protein genes (SV) and 224 non-venom paralogs (NV), belonging to 18 gene families. Molecular phylogeny reveals early divergence of SV and NV genes, suggesting that one of the four copies generated through two rounds of whole-genome duplication was modified for use as a toxin. Among them, both SV and NV genes in four major components were extensively duplicated after their diversification, but accelerated evolution is evident exclusively in the SV genes. Both venom-related SV and NV genes are significantly enriched in microchromosomes. The present study thus provides a genetic background for evolution of snake venom composition
The whole blood transcriptional regulation landscape in 465 COVID-19 infected samples from Japan COVID-19 Task Force
「コロナ制圧タスクフォース」COVID-19患者由来の血液細胞における遺伝子発現の網羅的解析 --重症度に応じた遺伝子発現の変化には、ヒトゲノム配列の個人差が影響する--. 京都大学プレスリリース. 2022-08-23.Coronavirus disease 2019 (COVID-19) is a recently-emerged infectious disease that has caused millions of deaths, where comprehensive understanding of disease mechanisms is still unestablished. In particular, studies of gene expression dynamics and regulation landscape in COVID-19 infected individuals are limited. Here, we report on a thorough analysis of whole blood RNA-seq data from 465 genotyped samples from the Japan COVID-19 Task Force, including 359 severe and 106 non-severe COVID-19 cases. We discover 1169 putative causal expression quantitative trait loci (eQTLs) including 34 possible colocalizations with biobank fine-mapping results of hematopoietic traits in a Japanese population, 1549 putative causal splice QTLs (sQTLs; e.g. two independent sQTLs at TOR1AIP1), as well as biologically interpretable trans-eQTL examples (e.g., REST and STING1), all fine-mapped at single variant resolution. We perform differential gene expression analysis to elucidate 198 genes with increased expression in severe COVID-19 cases and enriched for innate immune-related functions. Finally, we evaluate the limited but non-zero effect of COVID-19 phenotype on eQTL discovery, and highlight the presence of COVID-19 severity-interaction eQTLs (ieQTLs; e.g., CLEC4C and MYBL2). Our study provides a comprehensive catalog of whole blood regulatory variants in Japanese, as well as a reference for transcriptional landscapes in response to COVID-19 infection
- …