28 research outputs found

    Individual participant data meta-analysis to examine interactions between treatment effect and participant-level covariates: statistical recommendations for conduct and planning

    Get PDF
    Precision medicine research often searches for treatment‐covariate interactions, which refers to when a treatment effect (eg, measured as a mean difference, odds ratio, hazard ratio) changes across values of a participant‐level covariate (eg, age, gender, biomarker). Single trials do not usually have sufficient power to detect genuine treatment‐covariate interactions, which motivate the sharing of individual participant data (IPD) from multiple trials for meta‐analysis. Here, we provide statistical recommendations for conducting and planning an IPD meta‐analysis of randomized trials to examine treatment‐covariate interactions. For conduct, two‐stage and one‐stage statistical models are described, and we recommend: (i) interactions should be estimated directly, and not by calculating differences in meta‐analysis results for subgroups; (ii) interaction estimates should be based solely on within‐study information; (iii) continuous covariates and outcomes should be analyzed on their continuous scale; (iv) nonlinear relationships should be examined for continuous covariates, using a multivariate meta‐analysis of the trend (eg, using restricted cubic spline functions); and (v) translation of interactions into clinical practice is nontrivial, requiring individualized treatment effect prediction. For planning, we describe first why the decision to initiate an IPD meta‐analysis project should not be based on between‐study heterogeneity in the overall treatment effect; and second, how to calculate the power of a potential IPD meta‐analysis project in advance of IPD collection, conditional on characteristics (eg, number of participants, standard deviation of covariates) of the trials (potentially) promising their IPD. Real IPD meta‐analysis projects are used for illustration throughout

    Mechanisms of action of therapeutic exercise for knee and hip OA remain a black box phenomenon: an individual patient data mediation study with the OA Trial Bank

    Get PDF
    Objectives To evaluate mediating factors for the effect of therapeutic exercise on pain and physical function in people with knee/hip osteoarthritis (OA). Methods For Subgrouping and TargetEd Exercise pRogrammes for knee and hip OsteoArthritis (STEER OA), individual participant data (IPD) were sought from all published randomised controlled trials (RCTs) comparing therapeutic exercise to non-exercise controls in people with knee/hip OA. Using the Counterfactual framework, the effect of the exercise intervention and the percentage mediated through each potential mediator (muscle strength, proprioception and range of motion (ROM)) for knee OA and muscle strength for hip OA were determined. Results Data from 12 of 31 RCTs of STEER OA (1407 participants) were available. Within the IPD data sets, there were generally statistically significant effects from therapeutic exercise for pain and physical function in comparison to non-exercise controls. Of all potential mediators, only the change in knee extension strength was statistically and significantly associated with the change in pain in knee OA (β -0.03 (95% CI -0.05 to -0.01), 2.3% mediated) and with physical function in knee OA (β -0.02 (95% CI -0.04 to -0.00), 2.0% mediated) and hip OA (β -0.03 (95% CI -0.07 to -0.00), no mediation). Conclusions This first IPD mediation analysis of this scale revealed that in people with knee OA, knee extension strength only mediated ±2% of the effect of therapeutic exercise on pain and physical function. ROM and proprioception did not mediate changes in outcomes, nor did knee extension strength in people with hip OA. As 98% of the effectiveness of therapeutic exercise compared with non-exercise controls remains unexplained, more needs to be done to understand the underlying mechanisms of actions

    Association between antihypertensive treatment and adverse events: systematic review and meta-analysis

    Get PDF
    Abstract: Objective: To examine the association between antihypertensive treatment and specific adverse events. Design: Systematic review and meta-analysis. Eligibility criteria: Randomised controlled trials of adults receiving antihypertensives compared with placebo or no treatment, more antihypertensive drugs compared with fewer antihypertensive drugs, or higher blood pressure targets compared with lower targets. To avoid small early phase trials, studies were required to have at least 650 patient years of follow-up. Information sources: Searches were conducted in Embase, Medline, CENTRAL, and the Science Citation Index databases from inception until 14 April 2020. Main outcome measures: The primary outcome was falls during trial follow-up. Secondary outcomes were acute kidney injury, fractures, gout, hyperkalaemia, hypokalaemia, hypotension, and syncope. Additional outcomes related to death and major cardiovascular events were extracted. Risk of bias was assessed using the Cochrane risk of bias tool, and random effects meta-analysis was used to pool rate ratios, odds ratios, and hazard ratios across studies, allowing for between study heterogeneity (τ2). Results: Of 15 023 articles screened for inclusion, 58 randomised controlled trials were identified, including 280 638 participants followed up for a median of 3 (interquartile range 2-4) years. Most of the trials (n=40, 69%) had a low risk of bias. Among seven trials reporting data for falls, no evidence was found of an association with antihypertensive treatment (summary risk ratio 1.05, 95% confidence interval 0.89 to 1.24, τ2=0.009). Antihypertensives were associated with an increased risk of acute kidney injury (1.18, 95% confidence interval 1.01 to 1.39, τ2=0.037, n=15), hyperkalaemia (1.89, 1.56 to 2.30, τ2=0.122, n=26), hypotension (1.97, 1.67 to 2.32, τ2=0.132, n=35), and syncope (1.28, 1.03 to 1.59, τ2=0.050, n=16). The heterogeneity between studies assessing acute kidney injury and hyperkalaemia events was reduced when focusing on drugs that affect the renin angiotensin-aldosterone system. Results were robust to sensitivity analyses focusing on adverse events leading to withdrawal from each trial. Antihypertensive treatment was associated with a reduced risk of all cause mortality, cardiovascular death, and stroke, but not of myocardial infarction. Conclusions: This meta-analysis found no evidence to suggest that antihypertensive treatment is associated with falls but found evidence of an association with mild (hyperkalaemia, hypotension) and severe adverse events (acute kidney injury, syncope). These data could be used to inform shared decision making between doctors and patients about initiation and continuation of antihypertensive treatment, especially in patients at high risk of harm because of previous adverse events or poor renal function. Registration: PROSPERO CRD42018116860

    Moderators of the effect of therapeutic exercise for knee and hip osteoarthritis: a systematic review and individual participant data meta-analysis

    Get PDF
    Background Many international clinical guidelines recommend therapeutic exercise as a core treatment for knee and hip osteoarthritis. We aimed to identify individual patient-level moderators of the effect of therapeutic exercise for reducing pain and improving physical function in people with knee osteoarthritis, hip osteoarthritis, or both. Methods We did a systematic review and individual participant data (IPD) meta-analysis of randomised controlled trials comparing therapeutic exercise with non-exercise controls in people with knee osteoathritis, hip osteoarthritis, or both. We searched ten databases from March 1, 2012, to Feb 25, 2019, for randomised controlled trials comparing the effects of exercise with non-exercise or other exercise controls on pain and physical function outcomes among people with knee osteoarthritis, hip osteoarthritis, or both. IPD were requested from leads of all eligible randomised controlled trials. 12 potential moderators of interest were explored to ascertain whether they were associated with short-term (12 weeks), medium-term (6 months), and long-term (12 months) effects of exercise on self-reported pain and physical function, in comparison with non-exercise controls. Overall intervention effects were also summarised. This study is prospectively registered on PROSPERO (CRD42017054049). Findings Of 91 eligible randomised controlled trials that compared exercise with non-exercise controls, IPD from 31 randomised controlled trials (n=4241 participants) were included in the meta-analysis. Randomised controlled trials included participants with knee osteoarthritis (18 [58%] of 31 trials), hip osteoarthritis (six [19%]), or both (seven [23%]) and tested heterogeneous exercise interventions versus heterogeneous non-exercise controls, with variable risk of bias. Summary meta-analysis results showed that, on average, compared with non-exercise controls, therapeutic exercise reduced pain on a standardised 0–100 scale (with 100 corresponding to worst pain), with a difference of –6·36 points (95% CI –8·45 to –4·27, borrowing of strength [BoS] 10·3%, between-study variance [τ2] 21·6) in the short term, –3·77 points (–5·97 to –1·57, BoS 30·0%, τ2 14·4) in the medium term, and –3·43 points (–5·18 to –1·69, BoS 31·7%, τ2 4·5) in the long term. Therapeutic exercise also improved physical function on a standardised 0–100 scale (with 100 corresponding to worst physical function), with a difference of –4·46 points in the short term (95% CI –5·95 to –2·98, BoS 10·5%, τ2 10·1), –2·71 points in the medium term (–4·63 to –0·78, BoS 33·6%, τ2 11·9), and –3·39 points in the long term (–4·97 to –1·81, BoS 34·1%, τ2 6·4). Baseline pain and physical function moderated the effect of exercise on pain and physical function outcomes. Those with higher self-reported pain and physical function scores at baseline (ie, poorer physical function) generally benefited more than those with lower self-reported pain and physical function scores at baseline, with the evidence most certain in the short term (12 weeks). Interpretation There was evidence of a small, positive overall effect of therapeutic exercise on pain and physical function compared with non-exercise controls. However, this effect is of questionable clinical importance, particularly in the medium and long term. As individuals with higher pain severity and poorer physical function at baseline benefited more than those with lower pain severity and better physical function at baseline, targeting individuals with higher levels of osteoarthritis-related pain and disability for therapeutic exercise might be of merit

    Calculating the power to examine treatment-covariate interactions when planning an individual participant data meta-analysis of randomized trials with a binary outcome

    No full text
    Before embarking on an individual participant data meta-analysis (IPDMA) project, researchers and funders need assurance it is worth their time and cost. This should include consideration of how many studies are promising their IPD and, given the characteristics of these studies, the power of an IPDMA including them. Here, we show how to estimate the power of a planned IPDMA of randomized trials to examine treatment-covariate interactions at the participant level (ie, treatment effect modifiers). We focus on a binary outcome with binary or continuous covariates, and propose a three-step approach, which assumes the true interaction size is common to all trials. In step one, the user must specify a minimally important interaction size and, for each trial separately (eg, as obtained from trial publications), the following aggregate data: the number of participants and events in control and treatment groups, the mean and SD for each continuous covariate, and the proportion of participants in each category for each binary covariate. This allows the variance of the interaction estimate to be calculated for each trial, using an analytic solution for Fisher's information matrix from a logistic regression model. Step 2 calculates the variance of the summary interaction estimate from the planned IPDMA (equal to the inverse of the sum of the inverse trial variances from step 1), and step 3 calculates the corresponding power based on a two-sided Wald test. Stata and R code are provided, and two examples given for illustration. Extension to allow for between-study heterogeneity is also considered

    Calculating the power to examine treatment-covariate interactions when planning an individual participant data meta-analysis of randomized trials with a binary outcome.

    Get PDF
    Before embarking on an individual participant data meta-analysis (IPDMA) project, researchers and funders need assurance it is worth their time and cost. This should include consideration of how many studies are promising their IPD and, given the characteristics of these studies, the power of an IPDMA including them. Here, we show how to estimate the power of a planned IPDMA of randomized trials to examine treatment-covariate interactions at the participant level (ie, treatment effect modifiers). We focus on a binary outcome with binary or continuous covariates, and propose a three-step approach, which assumes the true interaction size is common to all trials. In step one, the user must specify a minimally important interaction size and, for each trial separately (eg, as obtained from trial publications), the following aggregate data: the number of participants and events in control and treatment groups, the mean and SD for each continuous covariate, and the proportion of participants in each category for each binary covariate. This allows the variance of the interaction estimate to be calculated for each trial, using an analytic solution for Fisher's information matrix from a logistic regression model. Step 2 calculates the variance of the summary interaction estimate from the planned IPDMA (equal to the inverse of the sum of the inverse trial variances from step 1), and step 3 calculates the corresponding power based on a two-sided Wald test. Stata and R code are provided, and two examples given for illustration. Extension to allow for between-study heterogeneity is also considered
    corecore