3 research outputs found

    Structural and thermodynamic analyses reveal critical features of glycopeptide recognition by the human PILRα immune cell receptor

    Get PDF
    金沢大学医薬保健研究域薬学系Before entering host cells, herpes simplex virus-1 uses its envelope glycoprotein B to bind paired immunoglobulin-like type 2 receptor α (PILRα) on immune cells. PILRα belongs to the Siglec (sialic acid (SA)-binding immunoglobulin-like lectin)- like family, members of which bind SA. PILRα is the only Siglec member to recognize not only the sialylated O-linked sugar T antigen (sTn) but also its attached peptide region. We previously determined the crystal structure of PILRα complexed with the sTn-linked glycopeptide of glycoprotein B, revealing the simultaneous recognition of sTn and peptide by the receptor. However, the contribution of each glycopeptide component to PILRα binding was largely unclear. Here, we chemically synthesized glycopeptide derivatives and determined the thermodynamic parameters of their interaction with PILRα. We show that glycopeptides with different sugar units linking SA and peptides (i.e. "GlcNAc-Type" and "deoxy- GlcNAc-Type" glycopeptides) have lower affinity and more enthalpy-driven binding than the wild type (i.e. GalNAc-Type glycopeptide). The crystal structures of PILRα complexed with these glycopeptides highlighted the importance of stereochemical positioning of the O4 atom of the sugar moiety. These results provide insights both for understanding the unique O-glycosylated peptide recognition by the PILRα and for the rational design of herpes simplex virus-1 entry inhibitors. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc

    Structural and thermodynamic analyses reveal critical features of glycopeptide recognition by the human PILR alpha immune cell receptor

    Get PDF
    Before entering host cells, herpes simplex virus-1 uses its envelope glycoprotein B to bind paired immunoglobulin-like type 2 receptor alpha (PILR alpha) on immune cells. PILR alpha belongs to the Siglec (sialic acid (SA)-binding immunoglobulin-like lectin)- like family, members of which bind SA. PILR alpha is the only Siglec member to recognize not only the sialylated O-linked sugar T antigen (sTn) but also its attached peptide region. We previously determined the crystal structure of PILR alpha complexed with the sTn-linked glycopeptide of glycoprotein B, revealing the simultaneous recognition of sTn and peptide by the receptor. However, the contribution of each glycopeptide component to PILR alpha binding was largely unclear. Here, we chemically synthesized glycopeptide derivatives and determined the thermodynamic parameters of their interaction with PILR alpha. We show that glycopeptides with different sugar units linking SA and peptides (i.e. "GlcNAc-type" and "deoxy-GlcNAc-type" glycopeptides) have lower affinity and more enthalpy-driven binding than the wild type (i.e. GalNAc-type glycopeptide). The crystal structures of PILR alpha complexed with these glycopeptides highlighted the importance of stereochemical positioning of the O4 atom of the sugar moiety. These results provide insights both for understanding the unique O-glycosylated peptide recognition by the PILR alpha and for the rational design of herpes simplex virus-1 entry inhibitors
    corecore