13 research outputs found
Complete Genome Sequence of Salinisphaera sp. Strain LB1, a Moderately Halo-Acidophilic Bacterium Isolated from Lake Brown, Western Australia
Salinisphaera sp. strain LB1 was isolated from Lake Brown, Western Australia, surface water enriched at pH 4.0 and with 5% (wt/vol) NaCl. The complete genome sequence is presented in this report
Isolation and Characterization of Microsatellite Loci for <i>Cornus sanguinea</i> (Cornaceae)
Premise of the study: To facilitate genetic and conservation research of Cornus sanguinea, microsatellite loci were isolated and 29 individuals from 11 German populations were genotyped.
Methods and Results: Sixteen microsatellite loci were characterized from an enriched small insert genomic library. The number of alleles detected ranged from five to 11 per locus, observed heterozygosity ranged from 0.00 to 1.00, expected heterozygosity ranged from 0.65 to 0.90, and polymorphic information content ranged from 0.59 to 0.88.
Conclusions: The markers described in the study will allow further investigation of population dynamics and the degree of clonal reproduction within populations of C. sanguinea
Population Structure and Genetic Diversity Within the Endangered Species Pityopsis ruthii (Asteraceae)
Pityopsis ruthii (Ruth’s golden aster) is a federally endangered herbaceous perennial endemic to the Hiwassee and Ocoee Rivers in southeastern Tennessee, United States. Comprehensive genetic studies providing novel information to conservationists for preservation of the species are lacking. Genetic variation and gene flow were evaluated for 814 individuals from 33 discrete locations using polymorphic microsatellites: seven chloroplast and twelve nuclear. A total of 198 alleles were detected with the nuclear loci and 79 alleles with the chloroplast loci. Gene flow was estimated, with the Hiwassee River (Nm = 2.16; FST = 0.15) showing higher levels of gene flow and lower levels of population differentiation than the Ocoee River (Nm = 1.28; FST = 0.19). Population structure was examined using Bayesian cluster analyses. Nuclear and chloroplast analyses were incongruent. From the chloroplast microsatellites, three clusters were identified; all were present in sampling sites at both rivers, indicating a lack of allele fixation along rivers. Nuclear markers revealed two clusters and separated by river. When the Hiwassee River locations were analyzed, four clusters were identified for both the chloroplast and nuclear microsatellites, though the individuals clustered differently. Analysis of the Ocoee River revealed two clusters for the chloroplast microsatellites and three for the nuclear microsatellites. We recommend P. ruthii be managed as four populations for the Hiwassee River and three populations for the Ocoee River. Our results provide critical genetic information for P. ruthii that can be used for species management decisions to drive future population augmentation/reintroduction and ex situ conservation efforts
Complete chloroplast genome comparisons for Pityopsis (Asteraceae).
Pityopsis includes several regionally and one federally endangered species of herbaceous perennials. Four species are highly localized, including the federally endangered P. ruthii. The genus includes several ploidy levels and interesting ecological traits such as drought tolerance and fire-dependent flowering. Results from previous cladistic analyses of morphology and from initial DNA sequence studies did not agree with one another or with the infrageneric taxonomic classification, with the result that infrageneric relationships remain unresolved. We sequenced, assembled, and compared the chloroplast (cp) genomes of 12 species or varieties of Pityopsis to better understand generic evolution. A reference cp genome 152,569 bp in length was assembled de novo from P. falcata. Reads from other sampled species were then aligned to the P. falcata reference and individual chloroplast genomes were assembled for each, with manual gapfilling and polishing. After removing the duplicated second inverted region, a multiple sequence alignment of the cp genomes was used to construct a maximum likelihood (ML) phylogeny for the twelve cp genomes. Additionally, we constructed a ML phylogeny from the nuclear ribosomal repeat region after mapping reads to the Helianthus annuus region. The chloroplast phylogeny supported two clades. Previously proposed clades and taxonomic sections within the genus were largely unsupported by both nuclear and chloroplast phylogenies. Our results provide tools for exploring hybridity and examining the physiological and genetic basis for drought tolerance and fire-dependent flowering. This study will inform breeding and conservation practices, and general knowledge of evolutionary history, hybridization, and speciation within Pityopsis
Image_3_Population Structure and Genetic Diversity Within the Endangered Species Pityopsis ruthii (Asteraceae).TIF
<p>Pityopsis ruthii (Ruth’s golden aster) is a federally endangered herbaceous perennial endemic to the Hiwassee and Ocoee Rivers in southeastern Tennessee, United States. Comprehensive genetic studies providing novel information to conservationists for preservation of the species are lacking. Genetic variation and gene flow were evaluated for 814 individuals from 33 discrete locations using polymorphic microsatellites: seven chloroplast and twelve nuclear. A total of 198 alleles were detected with the nuclear loci and 79 alleles with the chloroplast loci. Gene flow was estimated, with the Hiwassee River (N<sub>m</sub> = 2.16; F<sub>ST</sub> = 0.15) showing higher levels of gene flow and lower levels of population differentiation than the Ocoee River (N<sub>m</sub> = 1.28; F<sub>ST</sub> = 0.19). Population structure was examined using Bayesian cluster analyses. Nuclear and chloroplast analyses were incongruent. From the chloroplast microsatellites, three clusters were identified; all were present in sampling sites at both rivers, indicating a lack of allele fixation along rivers. Nuclear markers revealed two clusters and separated by river. When the Hiwassee River locations were analyzed, four clusters were identified for both the chloroplast and nuclear microsatellites, though the individuals clustered differently. Analysis of the Ocoee River revealed two clusters for the chloroplast microsatellites and three for the nuclear microsatellites. We recommend P. ruthii be managed as four populations for the Hiwassee River and three populations for the Ocoee River. Our results provide critical genetic information for P. ruthii that can be used for species management decisions to drive future population augmentation/reintroduction and ex situ conservation efforts.</p
Image_1_Population Structure and Genetic Diversity Within the Endangered Species Pityopsis ruthii (Asteraceae).TIF
<p>Pityopsis ruthii (Ruth’s golden aster) is a federally endangered herbaceous perennial endemic to the Hiwassee and Ocoee Rivers in southeastern Tennessee, United States. Comprehensive genetic studies providing novel information to conservationists for preservation of the species are lacking. Genetic variation and gene flow were evaluated for 814 individuals from 33 discrete locations using polymorphic microsatellites: seven chloroplast and twelve nuclear. A total of 198 alleles were detected with the nuclear loci and 79 alleles with the chloroplast loci. Gene flow was estimated, with the Hiwassee River (N<sub>m</sub> = 2.16; F<sub>ST</sub> = 0.15) showing higher levels of gene flow and lower levels of population differentiation than the Ocoee River (N<sub>m</sub> = 1.28; F<sub>ST</sub> = 0.19). Population structure was examined using Bayesian cluster analyses. Nuclear and chloroplast analyses were incongruent. From the chloroplast microsatellites, three clusters were identified; all were present in sampling sites at both rivers, indicating a lack of allele fixation along rivers. Nuclear markers revealed two clusters and separated by river. When the Hiwassee River locations were analyzed, four clusters were identified for both the chloroplast and nuclear microsatellites, though the individuals clustered differently. Analysis of the Ocoee River revealed two clusters for the chloroplast microsatellites and three for the nuclear microsatellites. We recommend P. ruthii be managed as four populations for the Hiwassee River and three populations for the Ocoee River. Our results provide critical genetic information for P. ruthii that can be used for species management decisions to drive future population augmentation/reintroduction and ex situ conservation efforts.</p
Table_3_Population Structure and Genetic Diversity Within the Endangered Species Pityopsis ruthii (Asteraceae).DOCX
<p>Pityopsis ruthii (Ruth’s golden aster) is a federally endangered herbaceous perennial endemic to the Hiwassee and Ocoee Rivers in southeastern Tennessee, United States. Comprehensive genetic studies providing novel information to conservationists for preservation of the species are lacking. Genetic variation and gene flow were evaluated for 814 individuals from 33 discrete locations using polymorphic microsatellites: seven chloroplast and twelve nuclear. A total of 198 alleles were detected with the nuclear loci and 79 alleles with the chloroplast loci. Gene flow was estimated, with the Hiwassee River (N<sub>m</sub> = 2.16; F<sub>ST</sub> = 0.15) showing higher levels of gene flow and lower levels of population differentiation than the Ocoee River (N<sub>m</sub> = 1.28; F<sub>ST</sub> = 0.19). Population structure was examined using Bayesian cluster analyses. Nuclear and chloroplast analyses were incongruent. From the chloroplast microsatellites, three clusters were identified; all were present in sampling sites at both rivers, indicating a lack of allele fixation along rivers. Nuclear markers revealed two clusters and separated by river. When the Hiwassee River locations were analyzed, four clusters were identified for both the chloroplast and nuclear microsatellites, though the individuals clustered differently. Analysis of the Ocoee River revealed two clusters for the chloroplast microsatellites and three for the nuclear microsatellites. We recommend P. ruthii be managed as four populations for the Hiwassee River and three populations for the Ocoee River. Our results provide critical genetic information for P. ruthii that can be used for species management decisions to drive future population augmentation/reintroduction and ex situ conservation efforts.</p
Table_5_Population Structure and Genetic Diversity Within the Endangered Species Pityopsis ruthii (Asteraceae).DOCX
<p>Pityopsis ruthii (Ruth’s golden aster) is a federally endangered herbaceous perennial endemic to the Hiwassee and Ocoee Rivers in southeastern Tennessee, United States. Comprehensive genetic studies providing novel information to conservationists for preservation of the species are lacking. Genetic variation and gene flow were evaluated for 814 individuals from 33 discrete locations using polymorphic microsatellites: seven chloroplast and twelve nuclear. A total of 198 alleles were detected with the nuclear loci and 79 alleles with the chloroplast loci. Gene flow was estimated, with the Hiwassee River (N<sub>m</sub> = 2.16; F<sub>ST</sub> = 0.15) showing higher levels of gene flow and lower levels of population differentiation than the Ocoee River (N<sub>m</sub> = 1.28; F<sub>ST</sub> = 0.19). Population structure was examined using Bayesian cluster analyses. Nuclear and chloroplast analyses were incongruent. From the chloroplast microsatellites, three clusters were identified; all were present in sampling sites at both rivers, indicating a lack of allele fixation along rivers. Nuclear markers revealed two clusters and separated by river. When the Hiwassee River locations were analyzed, four clusters were identified for both the chloroplast and nuclear microsatellites, though the individuals clustered differently. Analysis of the Ocoee River revealed two clusters for the chloroplast microsatellites and three for the nuclear microsatellites. We recommend P. ruthii be managed as four populations for the Hiwassee River and three populations for the Ocoee River. Our results provide critical genetic information for P. ruthii that can be used for species management decisions to drive future population augmentation/reintroduction and ex situ conservation efforts.</p
Table_4_Population Structure and Genetic Diversity Within the Endangered Species Pityopsis ruthii (Asteraceae).DOCX
<p>Pityopsis ruthii (Ruth’s golden aster) is a federally endangered herbaceous perennial endemic to the Hiwassee and Ocoee Rivers in southeastern Tennessee, United States. Comprehensive genetic studies providing novel information to conservationists for preservation of the species are lacking. Genetic variation and gene flow were evaluated for 814 individuals from 33 discrete locations using polymorphic microsatellites: seven chloroplast and twelve nuclear. A total of 198 alleles were detected with the nuclear loci and 79 alleles with the chloroplast loci. Gene flow was estimated, with the Hiwassee River (N<sub>m</sub> = 2.16; F<sub>ST</sub> = 0.15) showing higher levels of gene flow and lower levels of population differentiation than the Ocoee River (N<sub>m</sub> = 1.28; F<sub>ST</sub> = 0.19). Population structure was examined using Bayesian cluster analyses. Nuclear and chloroplast analyses were incongruent. From the chloroplast microsatellites, three clusters were identified; all were present in sampling sites at both rivers, indicating a lack of allele fixation along rivers. Nuclear markers revealed two clusters and separated by river. When the Hiwassee River locations were analyzed, four clusters were identified for both the chloroplast and nuclear microsatellites, though the individuals clustered differently. Analysis of the Ocoee River revealed two clusters for the chloroplast microsatellites and three for the nuclear microsatellites. We recommend P. ruthii be managed as four populations for the Hiwassee River and three populations for the Ocoee River. Our results provide critical genetic information for P. ruthii that can be used for species management decisions to drive future population augmentation/reintroduction and ex situ conservation efforts.</p
Table_1_Population Structure and Genetic Diversity Within the Endangered Species Pityopsis ruthii (Asteraceae).DOCX
<p>Pityopsis ruthii (Ruth’s golden aster) is a federally endangered herbaceous perennial endemic to the Hiwassee and Ocoee Rivers in southeastern Tennessee, United States. Comprehensive genetic studies providing novel information to conservationists for preservation of the species are lacking. Genetic variation and gene flow were evaluated for 814 individuals from 33 discrete locations using polymorphic microsatellites: seven chloroplast and twelve nuclear. A total of 198 alleles were detected with the nuclear loci and 79 alleles with the chloroplast loci. Gene flow was estimated, with the Hiwassee River (N<sub>m</sub> = 2.16; F<sub>ST</sub> = 0.15) showing higher levels of gene flow and lower levels of population differentiation than the Ocoee River (N<sub>m</sub> = 1.28; F<sub>ST</sub> = 0.19). Population structure was examined using Bayesian cluster analyses. Nuclear and chloroplast analyses were incongruent. From the chloroplast microsatellites, three clusters were identified; all were present in sampling sites at both rivers, indicating a lack of allele fixation along rivers. Nuclear markers revealed two clusters and separated by river. When the Hiwassee River locations were analyzed, four clusters were identified for both the chloroplast and nuclear microsatellites, though the individuals clustered differently. Analysis of the Ocoee River revealed two clusters for the chloroplast microsatellites and three for the nuclear microsatellites. We recommend P. ruthii be managed as four populations for the Hiwassee River and three populations for the Ocoee River. Our results provide critical genetic information for P. ruthii that can be used for species management decisions to drive future population augmentation/reintroduction and ex situ conservation efforts.</p