64 research outputs found

    Formal water rights in rural Tanzania: Deepening the dichotomy?

    Get PDF
    Water rights / Water law / Water scarcity / Water use / Water users’ associations / Irrigation water / Cost recovery

    Sustainable intensification of agriculture for human prosperity and global sustainability

    Get PDF
    There is an ongoing debate on what constitutes sustainable intensification of agriculture (SIA). In this paper, we propose that a paradigm for sustainable intensification can be defined and translated into an operational framework for agricultural development. We argue that this paradigm must now be defined—at all scales—in the context of rapidly rising global environmental changes in the Anthropocene, while focusing on eradicating poverty and hunger and contributing to human wellbeing. The criteria and approach we propose, for a paradigm shift towards sustainable intensification of agriculture, integrates the dual and interdependent goals of using sustainable practices to meet rising human needs while contributing to resilience and sustainability of landscapes, the biosphere, and the Earth system. Both of these, in turn, are required to sustain the future viability of agriculture. This paradigm shift aims at repositioning world agriculture from its current role as the world’s single largest driver of global environmental change, to becoming a key contributor of a global transition to a sustainable world within a safe operating space on Earth

    Managing water in rainfed agriculture—The need for a paradigm shift

    Get PDF
    Rainfed agriculture plays and will continue to play a dominant role in providing food and livelihoods for an increasing world population. We describe the world’s semi-arid and dry sub-humid savannah and steppe regions as global hotspots, in terms of water related constraints to food production, high prevalence of malnourishment and poverty, and rapidly increasing food demands. We argue that major water investments in agriculture are required. In these regions yield gaps are large, not due to lack of water per se, but rather due to inefficient management of water, soils, and crops. An assessment of management options indicates that knowledge exists regarding technologies,management systems, and planning methods. A key strategy is to minimise risk for dry spell induced crop failures, which requires an emphasis on water harvesting systems for supplemental irrigation. Large-scale adoption of water harvesting systems will require a paradigm shift in Integrated Water Resource Management (IWRM), in which rainfall is regarded as the entry point for the governance of freshwater, thus incorporating green water resources (sustaining rainfed agriculture and terrestrial ecosystems) and blue water resources (local runoff). The divide between rainfed and irrigated agriculture needs to be reconsidered in favor of a governance, investment, and management paradigm, which considers all water options in agricultural systems. A new focus is needed on the meso-catchment scale, as opposed to the current focus of IWRM on the basin level and the primary focus of agricultural improvements on the farmer’s field. We argue that the catchment scale offers the best opportunities for water investments to build resilience in smallscale agricultural systems and to address trade-offs between water for food and other ecosystem functions and services
    corecore