40 research outputs found

    Fast ignition by intense laser-accelerated proton beams

    No full text
    The concept of fast ignition with inertial confinement fusion (ICF) is a way to reduce the energy required for ignition and burn and to maximize the gain produced by a single implosion. Based on recent experimental findings at the PETAWATT laser at Lawrence Livermore National Laboratory, an intense proton beam to achieve fast ignition is proposed. It is produced by direct laser acceleration and focused onto the pellet from the rear side of an irradiated target and can be integrated into a hohlraum for indirect drive ICF

    Transport of energy by ultraintense laser-generated electrons in nail-wire targets

    No full text
    Nail-wire targets (20 μm diameter copper wires with 80 μm hemispherical head) were used to investigate energy transport by relativistic fast electrons generated in intense laser-plasma interactions. The targets were irradiated using the 300 J, 1 ps, and 2 × 1020 W · cm-2 Vulcan laser at the Rutherford Appleton Laboratory. A spherically bent crystal imager, a highly ordered pyrolytic graphite spectrometer, and single photon counting charge-coupled device gave absolute Cu Kα measurements. Results show a concentration of energy deposition in the head and an approximately exponential fall-off along the wire with about 60 μm 1/e decay length due to resistive inhibition. The coupling efficiency to the wire was 3.3 ± 1.7% with an average hot electron temperature of 620 ± 125 keV. Extreme ultraviolet images (68 and 256 eV) indicate additional heating of a thin surface layer of the wire. Modeling using the hybrid E-PLAS code has been compared with the experimental data, showing evidence of resistive heating, magnetic trapping, and surface transport. © 2009 American Institute of Physics

    Studies on the transport of high intensity laser-generated hot electrons in cone coupled wire targets

    No full text
    Experimental results showing hot electron penetration into Cu wires using Kα fluorescence imaging are presented. A 500 J, 1 ps laser was focused at f/3 into hollow aluminum cones joined at their tip to Cu wires of diameters from 10 to 40 μm. Comparison of the axially diminishing absolute intensity of Cu Kα with modeling shows that the penetration of the electrons is consistent with one dimensional Ohmic potential limited transport. The laser coupling efficiency to electron energy within the wire is shown to be proportional to the cross sectional area of the wire, reaching 15% for 40 μm wires. Further, we find the hot electron temperature within the wire to be about 750 keV. The relevance of these data to cone coupled fast ignition is discussed. © 2009 American Institute of Physics

    Characterization of a picosecond laser generated 4.5 keV TiK-alpha source for pulsed radiography

    No full text
    Kα radiation generated by interaction of an ultrashort (1 ps) laser with thin (25 μm) Ti foils at high intensity (2× 1016 W cm2) is analyzed using data from a spherical Bragg crystal imager and a single hit charge-coupled device spectrometer together with Monte Carlo simulations of Kα brightness. Laser to Kα and electron conversion efficiencies have been determined. We have also measured an effective crystal reflectivity of 3.75±2%. Comparison of imager data with data from the relatively broadband single hit spectrometer has revealed a reduction in crystal collection efficiency for high Kα yield. This is attributed to a shift in the K -shell spectrum due to Ti ionization. © 2005 American Institute of Physics

    TiK alpha radiography of Cu-doped plastic microshell implosions via spherically bent crystal imaging

    No full text
    We show that short pulse laser generated Ti Kα radiation can be used effectively as a backlighter for radiographic imaging. This method of x-ray radiography features high temporal and spatial resolution, high signal to noise ratio, and monochromatic imaging. We present here the Ti Kα backlit images of six-beam driven spherical implosions of thin-walled 500-μm Cu-doped deuterated plastic (CD) shells and of similar implosions with an included hollow gold cone. These radiographic results were used to define conditions for the diagnosis of fast ignition relevant electron transport within imploded Cu-doped coned CD shells. © 2005 American Institute of Physics
    corecore