24 research outputs found

    Vascular Disruption and the Role of Angiogenic Proteins After Spinal Cord Injury

    Full text link

    Biochemical and functional analysis of the Borna disease virus G protein.

    No full text
    The Borna disease virus (BDV) antigenome is comprised of five major open reading frames (ORFs). Products have been reported only for ORFs I, II, and III, encoding N (p40), P (p24/p23), and M (gp18), respectively. ORF IV predicts a 57-kDa protein with several potential glycosylation sites. Analysis of radiolabeled extracts from BDV-infected C6 cells and BHK-21 cells transfected with a Semliki Forest virus vector that contains ORF IV demonstrated the presence of a 94-kDa protein (G protein) which was sensitive to tunicamycin, endoglycosidase F/N-glycosidase, and endoglycosidase H but not to O-glycosidase. Sera from BDV-infected rats detected the G protein and had neutralization activity that was reduced following immunoadsorption with the G protein. Preincubation of cells with the G protein interfered with BDV infectivity. This effect was enhanced by treatment of the G protein with the exoglycosidase alpha-mannosidase and reduced after subsequent treatment with N-acetyl-beta-D-glucosaminidase. In concert these findings indicate that ORF IV encodes a 94-kDa N-linked glycoprotein with extensive high mannose- and/or hybrid-type oligosaccharide modifications. The presence of neutralization epitopes on the G protein and its capacity to interfere with infectivity suggest that the G protein is important for viral entry

    High-Dose Borna Disease Virus Infection Induces a Nucleoprotein-Specific Cytotoxic T-Lymphocyte Response and Prevention of Immunopathology

    No full text
    Experimental Borna disease virus (BDV) infection of rats and natural infection of horses and sheep leads to severe central nervous system disease based on immunopathological pathways. The virus replicates slowly, and the cellular immune response results in immunopathology. CD8(+) T cells exert effector cell functions, and their activity results in the destruction of virus-infected cells. Previously, Oldach and colleagues (D. Oldach, M. C. Zink, J. M. Pyper, S. Herzog, R. Rott, O. Narayan, and J. E. Clements, Virology 206:426–434, 1995) have reported protection against Borna disease after inoculation of high-dose cell-adapted BDV. Here we show that the outcome of the infection, i.e., immunopathology versus protection, is simply dependent on the amount of virus used for infection. High-dose BDV (10(6) FFU) triggers an early virus-specific reaction of the immune system, as demonstrated by strong cellular and humoral responses. In particular, the early presence and function of nucleoprotein-specific CD8(+) T cells could be demonstrated in the brain. We present evidence that in a noncytolytic and usually persistent virus infection, high-dose input virus mediates early control of the pathogen due to an efficient induction of an antiviral immune mechanism. From these data, we conclude that immune reactivity, in particular the cytotoxic T-cell response, determines whether the virus is controlled with prevention of the ensuing immunopathological disease or whether a persistent infection is established

    CD8(+) T Lymphocytes Mediate Borna Disease Virus-Induced Immunopathology Independently of Perforin

    No full text
    Perforin-mediated lysis of target cells is the major antiviral effector mechanism of CD8(+) T lymphocytes. We have analyzed the role of perforin in a mouse model for CD8(+) T-cell-mediated central nervous system (CNS) immunopathology induced by Borna disease virus. When a defective perforin gene was introduced into the genetic background of the Borna disease-susceptible mouse strain MRL, the resulting perforin-deficient mice developed strong neurological disease in response to infection indistinguishable from that of their perforin-expressing littermates. The onset of disease was slightly delayed. Brains of diseased perforin-deficient mice showed similar amounts and a similar distribution of CD8(+) T cells as wild-type animals. Perforin deficiency had no impact on the kinetics of viral spread through the CNS. Unlike brain lymphocytes from diseased wild-type mice, lymphocytes from perforin-deficient MRL mice showed no in vitro cytolytic activity towards target cells expressing the nucleoprotein of Borna disease virus. Taken together, these results demonstrate that CD8(+) T cells mediate Borna disease independent of perforin. They further suggest that the pathogenic potential of CNS-infiltrating CD8(+) T cells does not primarily reside in their lytic activity but rather in other functions

    Neutralizing Antibodies in Persistent Borna Disease Virus Infection: Prophylactic Effect of gp94-Specific Monoclonal Antibodies in Preventing Encephalitis

    No full text
    Borna disease virus (BDV) infection triggers an immune-mediated encephalomyelitis and results in a persistent infection. The immune response in the acute phase of the disease is characterized by a cellular response in which CD8(+) T cells are responsible for the destruction of virus-infected brain cells. CD4(+) T cells function as helper cells and support the production of antiviral antibodies. Antibodies generated in the acute phase of the disease against the nucleoprotein and the phosphoprotein are nonneutralizing. In the chronic phase of the disease, neutralizing antibodies directed against the matrix protein and glycoprotein are synthesized. In the present work, the biological role of the neutralizing-antibody response to BDV was further investigated. By analyzing the blood of rats infected intracerebrally with BDV, a highly neurotropic virus, nucleic acid could be detected between 30 and 50 days after infection. Neutralizing antibodies were found between 60 and 100 days after infection. Furthermore, we produced hybridomas secreting BDV-specific neutralizing monoclonal antibodies. These antibodies, directed against the major glycoprotein (gp94) of BDV, were able to prevent Borna disease if given prophylactically. These data suggest that the late appearance of BDV-specific neutralizing antibodies is due to the presence of BDV in the blood of chronically infected rats. Furthermore, these antibodies have the potential to neutralize the infectious virus when given early, which is an important finding with respect to the development of a vaccine
    corecore