111 research outputs found

    AIRE Functions As an E3 Ubiquitin Ligase

    Get PDF
    Autoimmune regulator (AIRE) gene mutation is responsible for the development of autoimmune-polyendocrinopathy-candidiasis ectodermal dystrophy, an organ-specific autoimmune disease with monogenic autosomal recessive inheritance. AIRE is predominantly expressed in medullary epithelial cells of the thymus and is considered to play important roles in the establishment of self-tolerance. AIRE contains two plant homeodomain (PHD) domains, and the novel role of PHD as an E3 ubiquitin (Ub) ligase has just emerged. Here we show that the first PHD (PHD1) of AIRE mediates E3 ligase activity. The significance of this finding was underscored by the fact that disease-causing missense mutations in the PHD1 (C311Y and P326Q) abolished its E3 ligase activity. These results add a novel enzymatic function for AIRE and suggest an indispensable role of the Ub proteasome pathway in the establishment of self-tolerance, in which AIRE is involved

    The novel heart-specific RING finger protein 207 is involved in energy metabolism in cardiomyocytes

    Get PDF
    A failing heart shows severe energy insufficiency, and it is presumed that this energy shortage plays a critical role in the development of cardiac dysfunction. However, little is known about the mechanisms that cause energy metabolic alterations in the failing heart. Here, we show that the novel RING-finger protein 207 (RNF207), which is specifically expressed in the heart, plays a role in cardiac energy metabolism. Depletion of RNF207 in neonatal rat cardiomyocytes (NRCs) leads to a reduced cellular concentration of adenosine triphosphate (ATP) and mitochondrial dysfunction. Consistent with this result, we observed here that the expression of RNF207 was significantly reduced in mice with common cardiac diseases including heart failure. Intriguingly, proteomic approaches revealed that RNF207 interacts with the voltage-dependent anion channel (VDAC), which is considered to be a key regulator of mitochondria function, as an RNF207-interacting protein. Our findings indicate that RNF207 is involved in ATP production by cardiomyocytes, suggesting that RNF207 plays an important role in the development of heart failure

    A phospho-switch controls RNF43-mediated degradation of Wnt receptors to suppress tumorigenesis.

    Get PDF
    Funder: Japan Foundation for Applied Enzymology; doi: https://doi.org/10.13039/100008695Funder: Pancreas Research Foundation of Japan Collaborative Research Project Program of the Medical Institute of Bioregulation, Kyushu University, Japan Joint Research Program of the Institute for Molecular and Cellular Regulation, Gunma University, Japan Grant for Joint Research Project of the Research Institute for Microbial Diseases Osaka UniversityFunder: European Research Council (ERC (639050) and the Interpark Bio-Convergence Center Grant Program.Frequent mutation of the tumour suppressor RNF43 is observed in many cancers, particularly colon malignancies. RNF43, an E3 ubiquitin ligase, negatively regulates Wnt signalling by inducing degradation of the Wnt receptor Frizzled. In this study, we discover that RNF43 activity requires phosphorylation at a triplet of conserved serines. This phospho-regulation of RNF43 is required for zebrafish development and growth of mouse intestinal organoids. Cancer-associated mutations that abrogate RNF43 phosphorylation cooperate with active Ras to promote tumorigenesis by abolishing the inhibitory function of RNF43 in Wnt signalling while maintaining its inhibitory function in p53 signalling. Our data suggest that RNF43 mutations cooperate with KRAS mutations to promote multi-step tumorigenesis via the Wnt-Ras-p53 axis in human colon cancers. Lastly, phosphomimetic substitutions of the serine trio restored the tumour suppressive activity of extracellular oncogenic mutants. Therefore, harnessing phospho-regulation of RNF43 might be a potential therapeutic strategy for tumours with RNF43 mutations

    TRIM31 interacts with p52Shc and inhibits Src-induced anchorage-independent growth

    Get PDF
    Tripartite motif-containing protein (TRIM) family proteins are involved in a broad range of biological processes and, consistently, their alterations result in diverse pathological conditions such as genetic diseases, viral infection and cancer development. In this study, we found that one of the TRIM family proteins, TRIM31, is highly expressed in the gastrointestinal tract and interacts with p52Shc, one of the signal transducers. We also found by a binding assay that almost the whole region other than the RING domain is required for the binding to p52Shc but found by pulse-chase analysis that overexpression of TRIM31 does not affect the stability of p52Shc. Moreover, we found that overexpression of TRIM31 suppresses anchorage-independent cell growth induced by the active form of c-Src. These results suggest that TRIM31 attenuates c-Src signaling via p52Shc under anchorage-independent growth conditions and is potentially associated with growth activity of cells in the gastrointestinal tract

    TRIM59 interacts with ECSIT and negatively regulates NF-κB and IRF-3/7-mediated signal pathways

    Get PDF
    Innate immune responses are triggered by pathogen-associated molecular patterns (PAMPs) through pattern recognition receptors (PRRs) and then activate intracellular signaling pathways including NF-κB and interferon regulatory factors. Recently, it has been reported that tripartite motif (TRIM) proteins function as crucial regulators via ubiquitin-mediated modifications for these signaling pathways. In this study, we showed that one of the TRIM family ubiquitin ligases, TRIM59, interacts with ECSIT as an adaptor protein required for the TLR-mediated transduction pathway. Luciferase reporter assays using reporter plasmids including NF-κB responsive element, interferon β (IFN-β) promoter and interferon-sensitive response element (ISRE) showed that overexpression of TRIM59 repressed their transcriptional activities, whereas knockdown of TRIM59 enhanced their transcriptional activities. Furthermore, TRIM59 inhibited phosphorylation and dimerization of IRF3 and IRF7, suggesting that TRIM59 negatively regulates upstream kinases for IRFs. These findings indicate that TRIM59 may serve as a multifunctional regulator for innate immune signaling pathways

    TRIM29 regulates the p63-mediated pathway in cervical cancer cells

    Get PDF
    Cell invasion and adhesion play an important role in cancer metastasis and are orchestrated by a complicated network of transcription factors including p63. Here, we show that a member of the tripartite motif protein family, TRIM29, is required for regulation of the p63-mediated pathway in cervical cancer cells. TRIM29 knockdown alters the adhesion and invasion activities of cervical cancer cells. TRIM29 knockdown and overexpression cause a significant decrease and increase of TAp63 alpha expression, respectively. TRIM29 knockdown alters the expression pattern of integrins and increases ZEB1 expression. TRIM29 is required for suppression of an increase in the adhesion activity of cells by TAp63 alpha. These findings suggest that TRIM29 regulates the p63-mediated pathway and the behavior of cervical cancer cells

    ZNRF1 interacts with tubulin and regulates cell morphogenesis

    Get PDF
    The ubiquitin-proteasome system has been implicated in neuronal degeneration and regeneration. We demonstrated that overexpression of ZNRF1, which has been identified as a crucial molecule in nerve regeneration, causes morphological changes such as neurite-like elongation. Molecular dissections showed that both the RING finger domain and zinc finger domain are required for morphological changes. Furthermore, we identified β-tubulin type 2 (Tubb2) as a ZNRF1-binding protein by yeast two-hybrid screening. In vivo binding assay showed that ZNRF1 interacts with Tubb2 and immunofluorescent staining suggests that ZNRF1 is colocalized with Tubb2. These results suggest that ZNRF1 mediates regulation of neuritogenesis via interaction with tubulin
    corecore