137 research outputs found
Non-homologous end joining, but not homologous recombination, enables survival for cells exposed to a histone deacetylase inhibitor
Non-homologous end joining (NHEJ) and homologous recombination (HR) are pathways that repair DNA double-strand breaks (DSBs). In Saccharomyces cerevisiae, the repair of these breaks is influenced by histone acetylation. Therefore, we tested mammalian cells deleted for NHEJ (Ku80 or DNA Ligase IV) or altered for HR (breast cancer associated gene, Brca2, or Bloom's syndrome, Blm) for sensitivity to trichostatin A (TSA), a histone deacetylase inhibitor that is being investigated as an anti-cancer therapeutic. We show that cells mutated for Ku80 (ku80(−/−)) or DNA Ligase IV (lig 4(−/−)), but not cells mutated for Brca2 (brca2(lex1/lex2)) or Blm (blm(tm3Brd/tm4Brd)), are hypersensitive to TSA in a dose-dependent manner. TSA-induced toxicity stimulates apoptosis and cell cycle checkpoint responses independent of p53, but does not increase phosphorylated histone H2AX (γ-H2AX) as compared with a clastogenic agent, camptothecin, indicating that the quantity of DSBs is not the primary cause of TSA-induced cell death. In addition, we show that potential anti-cancer drugs (LY-294002 and vanillin) that inhibit the family of phosphatidylinositol 3 kinases that include the NHEJ protein, DNA–PK(CS) act in synergy with TSA to reduce the viability of HeLa cells in tissue culture presenting the possibility of using the two drugs in combination to treat cancer
The length of homology required for gene targeting in embryonic stem cells
Homologous recombination has been used to introduce site-specific mutations into murine embryonic stem (ES) cells with both insertion and replacement vectors. In this study, we compared the frequency of gene targeting with various lengths of homology and found a dramatic increase in targeting with an increase in homology from 1.3 to 6.8 kb. We examined in detail the relationship between the length of homology and the gene-targeting frequency for replacement vectors and found that a critical length of homology is needed for targeting. Adding greater lengths of homology to this critical length has less of an effect on the targeting frequency. We also analyzed the lengths of homology necessary on both arms of the vector for gene replacement events and found that 472 bp of homology is used as efficiently as 1.2 kb in the formation and resolution of crossover junctions
Using Cash-To-Cash To Benchmark Service Industry Performance
The cash-to-cash (C2C) metric is a measurement tool which may be used to bridge the management of firms and functions in a supply chain. C2C can be used by management to improve firm liquidity position and overall firm value. Measuring C2C also offers a consistent measure across time, helps to identify the greatest leverage points and opportunities for improvement, serves as a means to set goals for improvement within the supply chain, and can help to optimize the entire supply chain, instead of sub-optimizing individual portions. In this study, the authors illustrate the calculation of cash-to-cash, investigate changes in C2C between product and service industries to identify key differences, review and discuss key leverage points of C2C, and provide insights for today’s service industry managers to understand the C2C metric from both accounting and supply chain management perspectives. Data in this study can also be used for benchmarking purposes
Limiting the Persistence of a Chromosome Break Diminishes Its Mutagenic Potential
To characterize the repair pathways of chromosome double-strand breaks (DSBs), one approach involves monitoring the repair of site-specific DSBs generated by rare-cutting endonucleases, such as I-SceI. Using this method, we first describe the roles of Ercc1, Msh2, Nbs1, Xrcc4, and Brca1 in a set of distinct repair events. Subsequently, we considered that the outcome of such assays could be influenced by the persistent nature of I-SceI-induced DSBs, in that end-joining (EJ) products that restore the I-SceI site are prone to repeated cutting. To address this aspect of repair, we modified I-SceI-induced DSBs by co-expressing I-SceI with a non-processive 3′ exonuclease, Trex2, which we predicted would cause partial degradation of I-SceI 3′ overhangs. We find that Trex2 expression facilitates the formation of I-SceI-resistant EJ products, which reduces the potential for repeated cutting by I-SceI and, hence, limits the persistence of I-SceI-induced DSBs. Using this approach, we find that Trex2 expression causes a significant reduction in the frequency of repair pathways that result in substantial deletion mutations: EJ between distal ends of two tandem DSBs, single-strand annealing, and alternative-NHEJ. In contrast, Trex2 expression does not inhibit homology-directed repair. These results indicate that limiting the persistence of a DSB causes a reduction in the frequency of repair pathways that lead to significant genetic loss. Furthermore, we find that individual genetic factors play distinct roles during repair of non-cohesive DSB ends that are generated via co-expression of I-SceI with Trex2
The behavioral ecology of moral dilemmas: childhood unpredictability, but not harshness, predicts less deontological and utilitarian responding
Childhood unpredictability and harshness are associated with patterns of psychology and behavior that enable individuals to make the most of adverse environments. The current research assessed effects of childhood unpredictability and harshness on individual differences in sacrificial moral decision making. Six studies (N = 1,503) supported the hypothesis that childhood unpredictability, but not harshness, would be associated with fewer decisions to reject harm (consistent with deontological ethics) and to maximize overall outcomes (consistent with utilitarian ethics). These associations were not moderated by perceptions of current environmental unpredictability (Studies 3a and 3b) and were robust to potential confounds (religiosity, political conservativism, Big 5 personality traits, and social desirability; Study 5). The associations between childhood unpredictability and lower deontological and utilitarian tendencies were statistically mediated by low levels of empathic concern and poor-quality social relationships (Study 4). Findings are consistent with the possibility that early calibration to ecological unpredictability, but not harshness, undermines other-oriented psychological processes which, in turn, reduce moral concerns about harm and consequences for other people
High Preservation of CpG Cytosine Methylation Patterns at Imprinted Gene Loci in Liver and Brain of Aged Mice
A gradual loss of the correct patterning of 5-methyl cytosine marks in gene promoter regions has been implicated in aging and age-related diseases, most notably cancer. While a number of studies have examined DNA methylation in aging, there is no consensus on the magnitude of the effects, particularly at imprinted loci. Imprinted genes are likely candidate to undergo age-related changes because of their demonstrated plasticity in utero, for example, in response to environmental cues. Here we quantitatively analyzed a total of 100 individual CpG sites in promoter regions of 11 imprinted and non-imprinted genes in liver and cerebral cortex of young and old mice using mass spectrometry. The results indicate a remarkably high preservation of methylation marks during the aging process in both organs. To test if increased genotoxic stress associated with premature aging would destabilize DNA methylation we analyzed two DNA repair defective mouse models showing a host of premature aging symptoms in liver and brain. However, also in these animals, at the end of their life span, we found a similarly high preservation of DNA methylation marks. We conclude that patterns of DNA methylation in gene promoters of imprinted genes are surprisingly stable over time in normal, postmitotic tissues and that the
Ku is a 5′-dRP/AP lyase that excises nucleotide damage near broken ends
Mammalian cells require Nonhomologous end joining (NHEJ) for efficient repair of chromosomal DNA double-strand breaks1. A key feature of biological sources of strand breaks is associated nucleotide damage, including base loss (abasic or AP sites)2. At single strand breaks, 5' terminal abasic sites are excised by pol β's 5'dRP lyase activity3,4,5,6: we show here in vitro and in cells that accurate and efficient repair by NHEJ of double-strand breaks with such damage similarly requires 5'dRP/AP lyase activity (Figure 1a). Classically defined NHEJ is moreover uniquely effective at coupling this end-cleaning step to joining in cells, helping distinguish this pathway from otherwise robust alternate NHEJ pathways. Surprisingly, the NHEJ factor Ku can be identified as an effective 5'dRP/AP lyase. Similar to other lyases7, Ku nicks DNA 3' of an abasic site by a mechanism involving a Schiff base covalent intermediate with the abasic site. We demonstrate using cell extracts that Ku is essential for efficient removal of AP sites near double-strand breaks and, consistent with this result, joining of such breaks is specifically reduced in cells complemented with a lyase-attenuated Ku mutant. Ku had previously been presumed only to recognize ends and recruit other factors that processed ends; our data supports an unexpected direct role for Ku in end processing steps as well
The progeroid phenotype of Ku80 deficiency Is dominant over DNA-PK CS deficiency
Ku80 and DNA-PKCS are both involved in the repair of double strand DNA breaks via the nonhomologous end joining (NHEJ) pathway. While ku80-/- mice exhibit a severely reduced lifespan and size, this phenotype is less pronounced in dna-pkcs -/- mice. However, these observations are based on independent studies with varying genetic backgrounds. Here, we generated ku80-/-, dna-pkcs -/- and double knock out mice in a C57Bl6/J*FVB F1 hybrid background and compared their lifespan, end of life pathology and mutation frequency in liver a
Adaptive Stress Response in Segmental Progeria Resembles Long-Lived Dwarfism and Calorie Restriction in Mice
How congenital defects causing genome instability can result in the pleiotropic symptoms reminiscent of aging but in a segmental and accelerated fashion remains largely unknown. Most segmental progerias are associated with accelerated fibroblast senescence, suggesting that cellular senescence is a likely contributing mechanism. Contrary to expectations, neither accelerated senescence nor acute oxidative stress hypersensitivity was detected in primary fibroblast or erythroblast cultures from multiple progeroid mouse models for defects in the nucleotide excision DNA repair pathway, which share premature aging features including postnatal growth retardation, cerebellar ataxia, and death before weaning. Instead, we report a prominent phenotypic overlap with long-lived dwarfism and calorie restriction during postnatal development (2 wk of age), including reduced size, reduced body temperature, hypoglycemia, and perturbation of the growth hormone/insulin-like growth factor 1 neuroendocrine axis. These symptoms were also present at 2 wk of age in a novel progeroid nucleotide excision repair-deficient mouse model (XPD(G602D/R722W)/XPA(−/−)) that survived weaning with high penetrance. However, despite persistent cachectic dwarfism, blood glucose and serum insulin-like growth factor 1 levels returned to normal by 10 wk, with hypoglycemia reappearing near premature death at 5 mo of age. These data strongly suggest changes in energy metabolism as part of an adaptive response during the stressful period of postnatal growth. Interestingly, a similar perturbation of the postnatal growth axis was not detected in another progeroid mouse model, the double-strand DNA break repair deficient Ku80 (−/−) mouse. Specific (but not all) types of genome instability may thus engage a conserved response to stress that evolved to cope with environmental pressures such as food shortage
- …