6,553 research outputs found

    An investigation of MAGSAT and complementary data emphasizing precambrian shields and adjacent areas of West Africa and South America

    Get PDF
    Accomplishments with regard to the mapping and analysis of MAGSAT data for the investigation of correlations between the magnetic field characteristics of South American and African shields are reported. Significant results in the interpretation of the global total-field anomalies and the anomaly patterns of Africa and South America are discussed. The central position of the Brazilian shield tends to form a negative total-field anomaly, consistent with findings for shields in equatorial Africa. Sedimentary sequences in the Amazon basin and in the Rio de Janeiro-Sao Paolo areas exhibit positive anomalies, also consistent with equatorial Africa. Results for the Caribbean Sea and Guyana regions are also described

    Do MAGSAT anomalies contain a record of past and present-day mantle convection under South America?

    Get PDF
    Global anomaly maps from the National Aeronautics and Space Administration's Magnetic Field Satellite (MAGSAT) have been spatially filtered to reduce the prominence of long-wavelength east-west bands and to improve the discrimination of anomalies within structural provinces. Previous research suggested a correlation between total-field MAGSAT anomaly lows in equatorial regions with crustal bodies of relatively high average magnetic susceptibility (such as Archaean shields), and of anomaly highs with bodies of low susceptibility (such as deep parts of basins). These correlations reverse at higher latitudes

    An investigation of MAGSAT and complementary data emphasizing Precambrian shields and adjacent areas of West Africa and South America

    Get PDF
    A mineral deposits overlay was prepared to the van der Grinten projection geological world map and coloring of the map was initiated. The Mercator projection version was proofread and some preliminary modeling of MAGSAT anomalies for South America were undertaken

    On the interpretation of satellite-derived gravity and magnetic data for studies of crustal geology and metallogenesis

    Get PDF
    Satellite-derived global gravity and magnetic maps have been shown to be useful in large-scale studies of the Earth's crust, despite the relative infancy of such studies. Numerous authors have made spatial associations of gravity or magnetic anomalies with geological provinces. Gravimetric interpretations are often made in terms of isostasy, regional variations of density, or of geodesy in general. Interpretations of satellite magnetic anomalies often base assumptions of overall crustal magnetism on concepts of the vertical and horizontal distribution of magnetic susceptibility, then make models of these assumed distributions. The opportunity of improving our satellite gravity and magnetic data through the proposed Geopotential Research Mission should considerably improve the scientific community's ability to analyze and interpret global magnetic and gravity data

    An investigation of MAGSAT and complementary data emphasizing precambrian shields and adjacent areas of West Africa and South America

    Get PDF
    The problems associated with the use of an interactive magnetic modeling program are reported and a publication summarizing the MAGSAT anomaly results for Africa and the possible tectonic associations of these anomalies is provided. An overview of the MAGSAT scalar anomaly map for Africa suggested a correlation of MAGSAT anomalies with major crustal blocks of uplift or depression and different degrees of regional metamorphism. The strongest MAGSAT anomalies in Africa are closely correlated spatially with major tectonic features. Results indicate that the Bangui anomaly may be caused by a central old Precambrian shield, flanked to the north and south by two relatively young sedimentary basins

    Sufficient Conditions for Topological Order in Insulators

    Full text link
    We prove the existence of low energy excitations in insulating systems at general filling factor under certain conditions, and discuss in which cases these may be identified as topological excitations. This proof is based on previously proven locality results. In the case of half-filling it provides a significantly shortened proof of the recent higher dimensional Lieb-Schultz-Mattis theorem.Comment: 7 pages, no figure

    Magic State Distillation with Low Space Overhead and Optimal Asymptotic Input Count

    Full text link
    We present an infinite family of protocols to distill magic states for TT-gates that has a low space overhead and uses an asymptotic number of input magic states to achieve a given target error that is conjectured to be optimal. The space overhead, defined as the ratio between the physical qubits to the number of output magic states, is asymptotically constant, while both the number of input magic states used per output state and the TT-gate depth of the circuit scale linearly in the logarithm of the target error δ\delta (up to loglog1/δ\log \log 1/\delta). Unlike other distillation protocols, this protocol achieves this performance without concatenation and the input magic states are injected at various steps in the circuit rather than all at the start of the circuit. The protocol can be modified to distill magic states for other gates at the third level of the Clifford hierarchy, with the same asymptotic performance. The protocol relies on the construction of weakly self-dual CSS codes with many logical qubits and large distance, allowing us to implement control-SWAPs on multiple qubits. We call this code the "inner code". The control-SWAPs are then used to measure properties of the magic state and detect errors, using another code that we call the "outer code". Alternatively, we use weakly-self dual CSS codes which implement controlled Hadamards for the inner code, reducing circuit depth. We present several specific small examples of this protocol.Comment: 39 pages, (v2) renamed "odd" and "even" weakly self-dual CSS codes of (v1) to "normal" and "hyperbolic" codes, respectively. (v3) published in Quantu
    corecore