1,051 research outputs found

    On combining information from multiple gravitational wave sources

    Get PDF
    In the coming years, advanced gravitational wave detectors will observe signals from a large number of compact binary coalescences. The majority of these signals will be relatively weak, making the precision measurement of subtle effects, such as deviations from general relativity, challenging in the individual events. However, many weak observations can be combined into precise inferences, if information from the individual signals is combined in an appropriate way. In this study we revisit common methods for combining multiple gravitational wave observations to test general relativity, namely (i) multiplying the individual likelihoods of beyond-general-relativity parameters and (ii) multiplying the Bayes Factor in favor of general relativity from each event. We discuss both methods and show that they make stringent assumptions about the modified theory of gravity they test. In particular, the former assumes that all events share the same beyond-general-relativity parameter, while the latter assumes that the theory of gravity has a new unrelated parameter for each detection. We show that each method can fail to detect deviations from general relativity when the modified theory being tested violates these assumptions. We argue that these two methods are the extreme limits of a more generic framework of hierarchical inference on hyperparameters that characterize the underlying distribution of single-event parameters. We illustrate our conclusions first using a simple model of Gaussian likelihoods, and also by applying parameter estimation techniques to a simulated dataset of gravitational waveforms in a model where the graviton is massive. We argue that combining information from multiple sources requires explicit assumptions that make the results inherently model-dependent.Comment: 9 pages, 3 figure

    Measuring the neutron star tidal deformability with equation-of-state-independent relations and gravitational waves

    Get PDF
    Gravitational wave measurements of binary neutron star coalescences offer information about the properties of the extreme matter that comprises the stars. Despite our expectation that all neutron stars in the Universe obey the same equation of state, i.e. the properties of the matter that forms them are universal, current tidal inference analyses treat the two bodies as independent. We present a method to measure the effect of tidal interactions in the gravitational wave signal -- and hence constrain the equation of state -- that assumes that the two binary components obey the same equation of state. Our method makes use of a relation between the tidal deformabilities of the two stars given the ratio of their masses, a relation that has been shown to only have a weak dependance on the equation of state. We use this relation to link the tidal deformabilities of the two stars in a realistic parameter inference study while simultaneously marginalizing over the error in the relation. This approach incorporates more physical information into our analysis, thus leading to a better measurement of tidal effects in gravitational wave signals. Through simulated signals we estimate that uncertainties in the measured tidal parameters are reduced by a factor of at least 2 -- and in some cases up to 10 -- depending on the equation of state and mass ratio of the system.Comment: 9 pages, 8 figures, final published versio

    Reanalysis of LIGO black-hole coalescences with alternative prior assumptions

    Get PDF
    We present a critical reanalysis of the black-hole binary coalescences detected during LIGO's first observing run under different Bayesian prior assumptions. We summarize the main findings of Vitale et al. (2017) and show additional marginalized posterior distributions for some of the binaries' intrinsic parameters.Comment: Proceedings of IAU Symposium 338: Gravitational Wave Astrophysics (Baton Rouge, LA, October 2017

    Impact of Bayesian prior on the characterization of binary black hole coalescences

    Get PDF
    In a regime where data are only mildly informative, prior choices can play a significant role in Bayesian statistical inference, potentially affecting the inferred physics. We show this is indeed the case for some of the parameters inferred from current gravitational-wave measurements of binary black hole coalescences. We reanalyze the first detections performed by the twin LIGO interferometers using alternative (and astrophysically motivated) prior assumptions. We find different prior distributions can introduce deviations in the resulting posteriors that impact the physical interpretation of these systems. For instance, (i) limits on the 90%90\% credible interval on the effective black hole spin χeff\chi_{\rm eff} are subject to variations of 10%\sim 10\% if a prior with black hole spins mostly aligned to the binary's angular momentum is considered instead of the standard choice of isotropic spin directions, and (ii) under priors motivated by the initial stellar mass function, we infer tighter constraints on the black hole masses, and in particular, we find no support for any of the inferred masses within the putative mass gap M5MM \lesssim 5 M_\odot.Comment: 6 Pages, 2 Figures; see also 1712.06635 Data release at https://github.com/vitale82/GWprior

    Dynamical Formation of the GW150914 Binary Black Hole

    Full text link
    We explore the possibility that GW150914, the binary black hole merger recently detected by Advanced LIGO, was formed by gravitational interactions in the core of a dense star cluster. Using models of globular clusters with detailed NN-body dynamics and stellar evolution, we show that a typical cluster with a mass of 3×105M3\times10^5M_{\odot} to 6×105M6\times10^5M_{\odot} is optimal for forming GW150914-like binary black holes that will merge in the local universe. We identify the most likely dynamical processes for forming GW150914 in such a cluster, and we show that the detection of GW150914 is consistent with the masses and merger rates expected for binary black hole mergers from globular clusters. Our results show that dynamical processes provide a significant and well-understood pathway for forming binary black hole mergers in the local universe. Understanding the contribution of dynamics to the binary black hole merger problem is a critical step in unlocking the full potential of gravitational-wave astronomy.Comment: Accepted by ApJ Letter

    Distinguishing types of compact-object binaries using the gravitational-wave signatures of their mergers

    Full text link
    We analyze the distinguishability of populations of coalescing binary neutron stars, neutron-star black-hole binaries, and binary black holes, whose gravitational-wave signatures are expected to be observed by the advanced network of ground-based interferometers LIGO and Virgo. We consider population-synthesis predictions for plausible merging binary distributions in mass space, along with measurement accuracy estimates from the main gravitational-wave parameter-estimation pipeline. We find that for our model compact-object binary mass distribution, we can always distinguish binary neutron stars and black-hole--neutron-star binaries, but not necessarily black-hole--neutron-star binaries and binary black holes; however, with a few tens of detections, we can accurately identify the three subpopulations and measure their respective rates.Comment: Revised unabridged version (contains material omitted from published version

    Gravitational-wave astrophysics with effective-spin measurements: asymmetries and selection biases

    Get PDF
    Gravitational waves emitted by coalescing compact objects carry information about the spin of the individual bodies. However, with present detectors only the mass-weighted combination of the components of the spin along the orbital angular momentum can be measured accurately. This quantity, the effective spin χeff\chi_{\mathrm{eff}}, is conserved up to at least the second post-Newtonian order. The measured distribution of χeff\chi_{\mathrm{eff}} values from a population of detected binaries, and in particular whether this distribution is symmetric about zero, encodes valuable information about the underlying compact-binary formation channels. In this paper we focus on two important complications of using the effective spin to study astrophysical population properties: (i) an astrophysical distribution for χeff\chi_{\mathrm{eff}} values which is symmetric does not necessarily lead to a symmetric distribution for the detected effective spin values, leading to a \emph{selection bias}; and (ii) the posterior distribution of χeff\chi_{\mathrm{eff}} for individual events is \emph{asymmetric} and it cannot usually be treated as a Gaussian. We find that the posterior distributions for χeff\chi_{\mathrm{eff}} systematically show fatter tails toward larger positive values, unless the total mass is large or the mass ratio m2/m1m_2/m_1 is smaller than 1/2\sim 1/2. Finally we show that uncertainties in the measurement of χeff\chi_{\mathrm{eff}} are systematically larger when the true value is negative than when it is positive. All these factors can bias astrophysical inference about the population when we have more than 100\sim 100 events and should be taken into account when using gravitational-wave measurements to characterize astrophysical populations.Comment: An online generator for synthetic χeff\chi_{\mathrm{eff}} posteriors can be found at: http://superstring.mit.edu/welcome.html Comments are welcom

    Efficient method for measuring the parameters encoded in a gravitational-wave signal

    Full text link
    Once upon a time, predictions for the accuracy of inference on gravitational-wave signals relied on computationally inexpensive but often inaccurate techniques. Recently, the approach has shifted to actual inference on noisy signals with complex stochastic Bayesian methods, at the expense of significant computational cost. Here, we argue that it is often possible to have the best of both worlds: a Bayesian approach that incorporates prior information and correctly marginalizes over uninteresting parameters, providing accurate posterior probability distribution functions, but carried out on a simple grid at a low computational cost, comparable to the inexpensive predictive techniques.Comment: 17 pages, 5 figure

    Eccentric Black Hole Mergers in Dense Star Clusters: The Role of Binary-Binary Encounters

    Full text link
    We present the first systematic study of strong binary-single and binary-binary black hole interactions with the inclusion of general relativity. When including general relativistic effects in strong encounters, dissipation of orbital energy from gravitational waves (GWs) can lead to captures and subsequent inspirals with appreciable eccentricities when entering the sensitive frequency ranges of the LIGO and Virgo GW detectors. In this study, we perform binary-binary and binary-single scattering experiments with general relativistic dynamics up through the 2.5 post-Newtonian order included, both in a controlled setting to gauge the importance of non-dissipative post-Newtonian terms and derive scaling relations for the cross-section of GW captures, as well as experiments tuned to the strong interactions from state-of-the art globular cluster models to assess the relative importance of the binary-binary channel at facilitating GW captures and the resultant eccentricity distributions of inspiral from channel. Although binary-binary interactions are 10-100 times less frequent in globular clusters than binary-single interactions, their longer lifetime and more complex dynamics leads to a higher probability for GW captures to occur during the encounter. We find that binary-binary interactions contribute 25-45% of the eccentric mergers which occur during strong black hole encounters in globular clusters, regardless of the properties of the cluster environment. The inclusion of higher multiplicity encounters in dense star clusters therefore have major implications on the predicted rates of highly eccentric binaries potentially detectable by the LIGO/Virgo network. As gravitational waveforms of eccentric inspirals are distinct from those generated by merging binaries which have circularized, measurements of eccentricity in such systems would highly constrain their formation scenario.Comment: 18 pages, 6 figures. Published in The Astrophysical Journa
    corecore