12 research outputs found

    Temporal pattern of C1q deposition after transient focal cerebral ischemia

    Full text link
    Recent studies have focused on elucidating the contribution of individual complement proteins to post-ischemic cellular injury. As the timing of complement activation and deposition after cerebral ischemia is not well understood, our study investigates the temporal pattern of C1q accumulation after experimental murine stroke. Brains were harvested from mice subjected to transient focal cerebral ischemia at 3, 6, 12, and 24 hr post reperfusion. Western blotting and light microscopy were employed to determine the temporal course of C1q protein accumulation and correlate this sequence with infarct evolution observed with TTC staining. Confocal microscopy was utilized to further characterize the cellular localization and characteristics of C1q deposition. Western Blot analysis showed that C1q protein begins to accumulate in the ischemic hemisphere between 3 and 6 hr post-ischemia. Light microscopy confirmed these findings, showing concurrent C1q protein staining of neurons. Confocal microscopy demonstrated co-localization of C1q protein with neuronal cell bodies as well as necrotic cellular debris. These experiments demonstrate the accumulation of C1q protein on neurons during the period of greatest infarct evolution. This data provides information regarding the optimal time window during which a potentially neuroprotective anti-C1q strategy is most likely to achieve therapeutic success. © 2006 Wiley-Liss, Inc.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/50651/1/20775_ftp.pd

    Neuronal RAGE expression modulates severity of injury following transient focal cerebral ischemia

    No full text
    Inflammation has a significant role in the neurological injury that follows stroke. The receptor for advanced-glycation end products (RAGE) is a multiligand member of the immunoglobulin superfamily that has been implicated in multiple neuronal and inflammatory stress processes. To directly test the role of neuronal RAGE in stroke, we employed two cohorts of transgenic mice, one over-expressing full-length functional human RAGE in neurons, and the other a human RAGE transgene in which deletion of the cytoplasmic domain of the receptor in neurons suppresses signal transduction stimulated by ligands (referred to as dominant negative or DN-RAGE). We found a statistically significant increase in stroke volume in the RAGE over-expressing cohort compared to normal controls, and a trend towards decreased stroke volume in the DN RAGE cohort. These results indicate that RAGE signaling directly contributes to pathology in cerebral ischemia

    C3a receptor modulation of granulocyte infiltration after murine focal cerebral ischemia is reperfusion dependent.

    No full text
    The complement anaphylatoxin C3a contributes to injury after cerebral ischemia in mice. This study assesses the effect of C3a receptor antagonist (C3aRA) on leukocyte infiltration into the ischemic zone. Transient or permanent middle cerebral artery occlusion (MCAO) was induced in wild-type C57Bl/6 mice. Intraperitoneal C3aRA or vehicle was administered 45 mins before or 1 h after occlusion. Twenty-four hours after occlusion, we harvested brain tissue and purified inflammatory cells using flow cytometry. Soluble intercellular adhesion molecule (ICAM)-1 protein levels were assessed using enzyme-linked immunosorbent assays, and ICAM-1 and C3a receptor (C3aR) expression was confirmed via immunohistochemistry. In the transient MCAO model, animals receiving C3aRA showed smaller strokes, less upregulation of C3aR-positive granulocytes, and less ICAM-1 protein on endothelial cells than vehicle-treated animals; no significant differences in other inflammatory cell populations were observed. C3a receptor antagonist-treated and vehicle-treated animals showed no differences in stroke volume or inflammatory cell populations after permanent MCAO. These data suggest that blocking the binding of C3a to C3aR modulates tissue injury in reperfused stroke by inhibiting the recruitment of neutrophils to the ischemic zone. It further establishes antagonism of the C3a anaphylatoxin as a promising strategy for ameliorating injury after ischemia/reperfusion

    C3a receptor antagonist attenuates brain injury after intracerebral hemorrhage

    No full text
    Neuroprotective therapy targeting the complement cascade may reduce injury associated with intracerebral hemorrhage (ICH). We investigated the role of C3a-receptor antagonist (C3aRA) after ICH in mice. Autologous whole blood was infused into the right striatum of mice that were treated with C3aRA or vehicle, using both a pre- and postinjury dosing regimen. Hematoma volume, brain water content, and inflammatory cell profile were assessed at 72 h post-ICH. Neurologic dysfunction was assessed by evaluating both spatial memory and sensorimotor capacity. Animals pretreated with C3aRA showed significantly improved neurologic function, brain water content, and granulocyte infiltration relative to vehicle-treated animals when assessed at 72 h. There was no significant difference in hemorrhagic/nonhemorrhagic ratio of microglial activation among all groups. Hematoma volumes were also not significantly different between C3aRA-treated and vehicle-treated animals. Administration of C3aRA beginning 6 h postinjury afforded significant amelioration of neurologic dysfunction as well as a reduction in brain water content. Treatment with C3aRA improved neurologic outcome while reducing inflammatory cell infiltration and brain edema formation after experimental ICH in mice. Results of this study suggest that the C3a receptor may be a promising target for therapeutic intervention in hemorrhagic stroke

    C3a Receptor Antagonist Attenuates Brain Injury after Intracerebral Hemorrhage

    No full text
    Neuroprotective therapy targeting the complement cascade may reduce injury associated with intracerebral hemorrhage (ICH). We investigated the role of C3a-receptor antagonist (C3aRA) after ICH in mice. Autologous whole blood was infused into the right striatum of mice that were treated with C3aRA or vehicle, using both a pre- and postinjury dosing regimen. Hematoma volume, brain water content, and inflammatory cell profile were assessed at 72 h post-ICH. Neurologic dysfunction was assessed by evaluating both spatial memory and sensorimotor capacity. Animals pretreated with C3aRA showed significantly improved neurologic function, brain water content, and granulocyte infiltration relative to vehicle-treated animals when assessed at 72 h. There was no significant difference in hemorrhagic/nonhemorrhagic ratio of microglial activation among all groups. Hematoma volumes were also not significantly different between C3aRA-treated and vehicle-treated animals. Administration of C3aRA beginning 6 h postinjury afforded significant amelioration of neurologic dysfunction as well as a reduction in brain water content. Treatment with C3aRA improved neurologic outcome while reducing inflammatory cell infiltration and brain edema formation after experimental ICH in mice. Results of this study suggest that the C3a receptor may be a promising target for therapeutic intervention in hemorrhagic stroke

    Complement component C3 mediates inflammatory injury following focal cerebral ischemia

    No full text
    The complement cascade has been implicated in ischemia/reperfusion injury, and recent studies have shown that complement inhibition is a promising treatment option for acute stroke. The development of clinically useful therapies has been hindered, however, by insufficient understanding of which complement subcomponents contribute to post-ischemic injury. To address this issue, we subjected mice deficient in selected complement proteins (C1q, C3, C5) to transient focal cerebral ischemia. Of the strains investigated, only C3-/- mice were protected, as demonstrated by 34% reductions in both infarct volume (P\u3c0.01) and neurological deficit score (P\u3c0.05). C3-deficient mice also manifested decreased granulocyte infiltration (P\u3c0.02) and reduced oxidative stress (P\u3c0.05). Finally, administration of a C3a-receptor antagonist resulted in commensurate neurological improvement and stroke volume reduction (P\u3c0.05). Together, these results establish C3 activation as the key constituent in complement-related inflammatory tissue injury following stroke and suggest a C3a anaphylatoxin-mediated mechanism
    corecore