4 research outputs found

    PVA/Chitosan/Silver Nanoparticles Electrospun Nanocomposites: Molecular Relaxations Investigated by Modern Broadband Dielectric Spectroscopy

    Get PDF
    In this study, we used broadband dielectric spectroscopy to analyze polymer nanofibers of poly(vinyl alcohol)/chitosan/silver nanoparticles. We also studied the effect of incorporating silver nanoparticles in the polymeric mat, on the chain motion dynamics and their interactions with chitosan nanofibers, and we calculated the activation energies of the sub-Tg relaxation processes. Results revealed the existence of two sub-Tg relaxations, the first gets activated at very low temperature (−90 °C) and accounts for motions of the side groups within the repeating unit such as –NH2, –OH, and –CH2OH in chitosan and poly(vinyl alcohol). The second process gets activated around −10 °C and it is thought to be related to the local main chain segments’ motions that are facilitated by fluctuations within the glycosidic bonds of chitosan. The activation energy for the chitosan/PVA/AgNPs nanocomposite nanofibers is much higher than that of the chitosan control film due to the presence of strong interactions between the amine groups and the silver nanoparticles. Kramers–Krönig integral transformation of the ε′′ vs. f spectra in the region of the chitosan Tg helped resolve this relaxation and displayed the progress of its maxima with increasing temperature in the regular manner

    Synthesis, characterization, and antimicrobial properties of novel double layer nanocomposite electrospun fibers for wound dressing applications

    Get PDF
    Herein, novel hybrid nanomaterials were developed for wound dressing applications with antimicrobial properties. Electrospinning was used to fabricate a double layer nanocomposite nanofibrous mat consisting of an upper layer of poly(vinyl alcohol) and chitosan loaded with silver nanoparticles (AgNPs) and a lower layer of polyethylene oxide (PEO) or polyvinylpyr- rolidone (PVP) nanofibers loaded with chlorhexidine (as an antiseptic). The top layer containing AgNPs, whose purpose was to protect the wound site against environmental germ invasion, was prepared by reducing silver nitrate to its nanoparticulate form through interaction with chitosan. The lower layer, which would be in direct contact with the injured site, contained the antibi- otic drug needed to avoid wound infections which would otherwise interfere with the healing process. Initially, the upper layer was electrospun, followed sequentially by electrospinning the second layer, creating a bilayer nanofibrous mat. The morphology of the nanofibrous mats was studied by scanning electron microscopy and transmission electron microscopy, showing successful nanofiber production. X-ray diffraction confirmed the reduction of silver nitrate to AgNPs. Fourier transform infrared spectroscopy showed a successful incorporation of the material used in the produced nanofibrous mats. Thermal studies carried out by thermogravi- metric analysis indicated that the PVP–drug-loaded layer had the highest thermal stability in comparison to other fabricated nanofibrous mats. Antimicrobial activities of the as-synthesized nanofibrous mats against Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa, and Candida albicans were determined using disk diffusion method. The results indicated that the PEO–drug-loaded mat had the highest antibacterial activity, warranting further attention for numerous wound-healing applications.QUST-CAS-SPR-14\15-

    PVA/Chitosan/Silver Nanoparticles Electrospun Nanocomposites: Molecular Relaxations Investigated by Modern Broadband Dielectric Spectroscopy

    Get PDF
    In this study, we used broadband dielectric spectroscopy to analyze polymer nanofibers of poly(vinyl alcohol)/chitosan/silver nanoparticles. We also studied the effect of incorporating silver nanoparticles in the polymeric mat, on the chain motion dynamics and their interactions with chitosan nanofibers, and we calculated the activation energies of the sub-Tg relaxation processes. Results revealed the existence of two sub-Tg relaxations, the first gets activated at very low temperature (−90 °C) and accounts for motions of the side groups within the repeating unit such as ⁻NH2, ⁻OH, and ⁻CH2OH in chitosan and poly(vinyl alcohol). The second process gets activated around −10 °C and it is thought to be related to the local main chain segments’ motions that are facilitated by fluctuations within the glycosidic bonds of chitosan. The activation energy for the chitosan/PVA/AgNPs nanocomposite nanofibers is much higher than that of the chitosan control film due to the presence of strong interactions between the amine groups and the silver nanoparticles. Kramers⁻Krönig integral transformation of the ε′′ vs. f spectra in the region of the chitosan Tg helped resolve this relaxation and displayed the progress of its maxima with increasing temperature in the regular manner

    Review of recent research on biomedical applications of electrospun polymer nanofibers for improved wound healing

    No full text
    Wound dressings play an important role in a patient’s recovery from health problems, as unattended wounds could lead to serious complications such as infections or, ultimately, even death. Therefore, wound dressings since ancient times have been continuously developed, starting from simple dressings from natural materials for covering wounds to modern dressings with functionalized materials to aid in the wound healing process and enhance tissue repair. However, understanding the nature of a wound and the subsequent healing process is vital information upon which dressings can be tailored to ensure a patient’s recovery. To date, much progress has been made through the use of nanomedicine in wound healing due to the ability of such materials to mimic the natural dimensions of tissue. This review provides an overview of recent studies on the physiology of wound healing and various wound dressing materials made of nanofibers fabricated using the electrospinning technique
    corecore