491 research outputs found

    Narrowing uncertainty of projections of the global economy-climate system dynamics via mutually compatible integration within multi-model ensembles

    Get PDF
    Any model used to derive projections of future climate or assess its impact constitutes a particular simplification of reality. To date, no model building process can guarantee full ?objectivity? in the choice of model assumptions and parameterization. In this connection, researchers have introduced a number of stylized integrated assessment models, which attempt to represent the full time-dynamic non-linear causal loop between accumulated emissions, economy and climate, yet in a aggregated, simplified fashion to enable extensive uncertainty analysis with respect to both structural and parametric uncertainty. In this work, we put forward a simplified system dynamics integrated assessment model which simulates the global economic growth, corresponding emissions, global warming and caused by its secondary effects economic losses. While generally our model follows the same logic as DICE and other models of this kind, it pays more attention to the mechanism of the emission reduction. Mitigation is assumed to be done through the allocation of a certain fraction of the total output into enhancing carbon and energy efficiency. The model enables exploring effects of mitigation scenarios defined via carbon tax. We explore the structural sensitivity by examining five alternative climate sensitivity functions and use the "mutual compatibility integration" approach to synthesize the information from the five alternative model versions

    Narrowing Uncertainty of Projections of the Global Economy-Climate System Dynamics via Mutually Compatible Integration within Multi-Model Ensembles

    Get PDF
    Any model used to derive projections of future climate or assess its impact constitutes a particular simplification of reality. To date, no model building process can guarantee full “objectivity” in the choice of model assumptions and parameterization. In this connection, researchers have introduced a number of stylized integrated assessment models, which attempt to represent the full time-dynamic non-linear causal loop between accumulated emissions, economy and climate, yet in a aggregated, simplified fashion to enable extensive uncertainty analysis with respect to both structural and parametric uncertainty. In this work, we put forward a simplified system dynamics integrated assessment model which simulates the global economic growth, corresponding emissions, global warming and caused by its secondary effects economic losses. While generally our model follows the same logic as DICE and other models of this kind, it pays more attention to the mechanism of the emission reduction. Mitigation is assumed to be done through the allocation of a certain fraction of the total output into enhancing carbon and energy efficiency. The model enables exploring effects of mitigation scenarios defined via carbon tax. We explore the structural sensitivity by examining five alternative climate sensitivity functions and use the "mutual compatibility integration" approach to synthesize the information from the five alternative model versions

    Intercomparison of two-dimensional wave spectra obtained from microwave instruments, buoys and WAModel simulations during the surface wave dynamics experiment

    Get PDF
    An intercomparison is made of two dimensional wave spectra obtained from buoys and various remote sensing microwave systems and predicted by the WAModel dur- ing the Surface Wave Dynamics Experiment (SWADE). The overall agreement be- tween the measurements and the model is satifactory, but some differences in detail require further investigation. The buoy data yield reliable mean spectral parame- ters, but the maximum likelihood retrieval algorithm tends to produce directional distributions that are broader than those of other instruments. Various microwave instruments (ROWS, RESSAC, SRA) show good promise for the determination of 2d-wave spectra, but exhibit individual shortcomings (calibration uncertainties, di- rectional ambiguity, impact of aircraft motion) that need to be further studied. The SAR system yields reliable retrievals with respect to the general spectral dis- tribution, but suffers in this experiment from an undetermined calibration factor. Deviations between the WAModel and instrumental data could be largely attributed to wind field errors, but the model also exhibits deficiencies in the development of short-fetch wave systems and in the wave spectral response to rapidly turning wind fields

    Energy spectra of the ocean's internal wave field: theory and observations

    Full text link
    The high-frequency limit of the Garrett and Munk spectrum of internal waves in the ocean and the observed deviations from it are shown to form a pattern consistent with the predictions of wave turbulence theory. In particular, the high frequency limit of the Garrett and Munk spectrum constitutes an {\it exact} steady state solution of the corresponding kinetic equation.Comment: 4 pages, one color figur

    Differential approximation for Kelvin-wave turbulence

    Full text link
    I present a nonlinear differential equation model (DAM) for the spectrum of Kelvin waves on a thin vortex filament. This model preserves the original scaling of the six-wave kinetic equation, its direct and inverse cascade solutions, as well as the thermodynamic equilibrium spectra. Further, I extend DAM to include the effect of sound radiation by Kelvin waves. I show that, because of the phonon radiation, the turbulence spectrum ends at a maximum frequency ω(ϵ3cs20/κ16)1/13\omega^* \sim (\epsilon^3 c_s^{20} / \kappa^{16})^{1/13} where ϵ\epsilon is the total energy injection rate, csc_s is the speed of sound and κ\kappa is the quantum of circulation.Comment: Prepared of publication in JETP Letter

    Measurements of wind-wave growth and swell decay during the joint North Sea wave project (JONSWAP).

    Get PDF
    Wavo spectra were measured along a profile extending 160 km into the North Sea westward from Sylt for a period of ten weeks in 1969. Currents, tides, air-sea temperature differences and turbulence in the atmospheric boundary layer were also measured. the goal of the experiment (described in Part 1) was to determine the structure of the source function governing the energy balance of the wave spectrum, with particular emphasis on wave growth under stationary offshore wind conditions (Part 2) and the attention of swell in water of finito depth (Part 3). The source functions of wave spectra generated by offshore winds exhibit a characteristic plus-minus signature associated with the shift of the sharp spectral peak towards lower frequencies. The two-lobed distribution of the source function can be explained quantitively by the nonlinear transfer due to resonant wave-wave interactions (second order Bragg scattering). The evolution of a pronounced peak and its shift towards lower frequencies can also be understood as a self-stabilizing feature of this process. The decay rates determined for incoming swell varied considerably, but energy attenuation factors of two along the length of the profile were typical. This is in order of magnitude agreement with expected damping rates due to bottom friction. However, the strong tidal modulation predicted by theory for the case of a quadratic bottom friction law was not observed. Adverse winds did not affect the decay rate. Computations also rule out wave-wave interactions or dissipation due to turbulence outside the bottom boundary layer as effective mechanisms of swell attenuation. We conclude that either the generally accepted friction law needs to be significantly modified or that some other mechanism, such as scattering by bottom irregularities, is the cause of the attenuation. The dispersion characteristics of thw swells indicated rather nearby origins, for which the classical DELTA-event model was generally inapplicable. A strong Doppler modulation by tidal currents was also observed. (A

    Statistical Description of Acoustic Turbulence

    Full text link
    We develop expressions for the nonlinear wave damping and frequency correction of a field of random, spatially homogeneous, acoustic waves. The implications for the nature of the equilibrium spectral energy distribution are discussedComment: PRE, Submitted. REVTeX, 16 pages, 3 figures (not included) PS Source of the paper with figures avalable at http://lvov.weizmann.ac.il/onlinelist.htm

    Global climate models violate scaling of the observed atmospheric variability

    Full text link
    We test the scaling performance of seven leading global climate models by using detrended fluctuation analysis. We analyse temperature records of six representative sites around the globe simulated by the models, for two different scenarios: (i) with greenhouse gas forcing only and (ii) with greenhouse gas plus aerosol forcing. We find that the simulated records for both scenarios fail to reproduce the universal scaling behavior of the observed records, and display wide performance differences. The deviations from the scaling behavior are more pronounced in the first scenario, where also the trends are clearly overestimated.Comment: Accepted for publishing in Physical Review Letter
    corecore