44 research outputs found

    Synthesis of a thiazole library via an iridium-catalyzed sulfur ylide insertion reaction

    Get PDF
    A library of thiazoles and selenothiazoles were synthesized via Ir-catalyzed ylide insertion chemistry. This process is a functional group, particularly heterocycle-substituent tolerant. This was applied to the synthesis of fanetizole, an anti-inflammatory drug, and a thiazole-containing drug fragment that binds to the peptidyl-tRNA hydrolase (Pth) in Neisseria gonorrheae bacteria

    Scale-up and optimization of the synthesis of dual CBP/BRD4 inhibitor ISOX-DUAL

    Get PDF
    ISOX-DUAL is a dual inhibitor of CBP/p300 (IC50 = 0.65 μM) and BRD4 (IC50 = 1.5 μM) bromodomains, and a useful chemical probe for epigenetic research. Aspects of the published synthetic route to this compound and its analogues are small-scale, poor-yielding or simply unamenable to scale-up without optimization. Herein we describe the development of a refined synthesis that circumvents the challenges of the original report, with notable improvements to several of the key synthetic transformations. Moreover, a general Suzuki Miyaura protocol for the late stage installation of alternative dimethyl-isoxazole acetyl-lysine (KAc) binding motifs is presented

    The structure-function relationship of oncogenic LMTK3

    Get PDF
    Elucidating signaling driven by lemur tyrosine kinase 3 (LMTK3) could help drug development. Here, we solve the crystal structure of LMTK3 kinase domain to 2.1Å resolution, determine its consensus motif and phosphoproteome, unveiling in vitro and in vivo LMTK3 substrates. Via high-throughput homogeneous time-resolved fluorescence screen coupled with biochemical, cellular, and biophysical assays, we identify a potent LMTK3 small-molecule inhibitor (C28). Functional and mechanistic studies reveal LMTK3 is a heat shock protein 90 (HSP90) client protein, requiring HSP90 for folding and stability, while C28 promotes proteasome-mediated degradation of LMTK3. Pharmacologic inhibition of LMTK3 decreases proliferation of cancer cell lines in the NCI-60 panel, with a concomitant increase in apoptosis in breast cancer cells, recapitulating effects of LMTK3 gene silencing. Furthermore, LMTK3 inhibition reduces growth of xenograft and transgenic breast cancer mouse models without displaying systemic toxicity at effective doses. Our data reinforce LMTK3 as a druggable target for cancer therap

    Probing BRD inhibition substituent effects in bulky analogues of (+)-JQ1

    Get PDF
    A series of bulky organometallic and organic analogues of the bromodomain (BRD) inhibitor (+)-JQ1 have been prepared. The most potent, N-[(adamantan-1-yl)methyl]-2-[(9S)-7-(4-chlorophenyl)-4,5,13-trimethyl-3-thia-1,8,11,12-tetraazatricyclo[8.3.0.02,6]trideca-2(6),4,7,10,12-pentaen-9-yl]acetamide, 2e, showed excellent potency with an KD=ca. 130 nm vs. BRD4(1) and a ca. 2-fold selectivity over BRD4(2) (KD=ca. 260 nm). Its binding to the first bromodomain of BRD4 was determined by a protein cocrystal structure

    Synthesis and biological investigation of (+)-JD1, an organometallic BET bromodomain inhibitor

    Get PDF
    (+)-JD1, a rationally designed ferrocene analogue of the BET bromodomain (BRD) probe molecule (+)-JQ1, has been synthesized and evaluated in biophysical, cell-based assays as well as in pharmacokinetic studies. It displays nanomolar activity against BRD isoforms, and its cocrystal structure was determined in complex with the first bromodomain of BRD4 and compared with that of (+)-JQ1, a known BRD4 small-molecule probe. At 1 μM concentration, (+)-JD1 was able to inhibit c-Myc, a key driver in cancer and an indirect target of BRD4

    Genetic aspects of dental disorders

    Get PDF
    The document attached has been archived with permission from the Australian Dental Association. An external link to the publisher’s copy is included.This paper reviews past and present applications of quantitative and molecular genetics to dental disorders. Examples are given relating to craniofacial development (including malocclusion), oral supporting tissues (including periodontal diseases) and dental hard tissues (including defects of enamel and dentine as well as dental caries). Future developments and applications to clinical dentistry are discussed. Early investigations confirmed genetic bases to dental caries, periodontal diseases and malocclusion, but research findings have had little impact on clinical practice. The complex multifactorial aetiologies of these conditions, together with methodological problems, have limited progress until recently. Present studies are clarifying previously unrecognized genetic and phenotypic heterogeneities and attempting to unravel the complex interactions between genes and environment by applying new statistical modelling approaches to twin and family data. linkage studies using highly polymorphic DNA markers are providing a means of locating candidate genes, including quantitative trait loci (QTL). In future, as knowledge increases: it should be possible to implement preventive strategies for those genetically-predisposed individuals who are identified-predisposed individuals who are identified to be at risk.Grant C. Townsend, Michael J. Aldred and P. Mark Bartol

    Keratan sulphate in the tumour environment

    Get PDF
    Keratan sulphate (KS) is a bioactive glycosaminoglycan (GAG) of some complexity composed of the repeat disaccharide D-galactose β1→4 glycosidically linked to N-acetyl glucosamine. During the biosynthesis of KS, a family of glycosyltransferase and sulphotransferase enzymes act sequentially and in a coordinated fashion to add D-galactose (D-Gal) then N-acetyl glucosamine (GlcNAc) to a GlcNAc acceptor residue at the reducing terminus of a nascent KS chain to effect chain elongation. D-Gal and GlcNAc can both undergo sulphation at C6 but this occurs more frequently on GlcNAc than D-Gal. Sulphation along the developing KS chain is not uniform and contains regions of variable length where no sulphation occurs, regions which are monosulphated mainly on GlcNAc and further regions of high sulphation where both of the repeat disaccharides are sulphated. Each of these respective regions in the KS chain can be of variable length leading to KS complexity in terms of chain length and charge localization along the KS chain. Like other GAGs, it is these variably sulphated regions in KS which define its interactive properties with ligands such as growth factors, morphogens and cytokines and which determine the functional properties of tissues containing KS. Further adding to KS complexity is the identification of three different linkage structures in KS to asparagine (N-linked) or to threonine or serine residues (O-linked) in proteoglycan core proteins which has allowed the categorization of KS into three types, namely KS-I (corneal KS, N-linked), KS-II (skeletal KS, O-linked) or KS-III (brain KS, O-linked). KS-I to -III are also subject to variable addition of L-fucose and sialic acid groups. Furthermore, the GlcNAc residues of some members of the mucin-like glycoprotein family can also act as acceptor molecules for the addition of D-Gal and GlcNAc residues which can also be sulphated leading to small low sulphation glycoforms of KS. These differ from the more heavily sulphated KS chains found on proteoglycans. Like other GAGs, KS has evolved molecular recognition and information transfer properties over hundreds of millions of years of vertebrate and invertebrate evolution which equips them with cell mediatory properties in normal cellular processes and in aberrant pathological situations such as in tumourogenesis. Two KS-proteoglycans in particular, podocalyxin and lumican, are cell membrane, intracellular or stromal tissue–associated components with roles in the promotion or regulation of tumour development, mucin-like KS glycoproteins may also contribute to tumourogenesis. A greater understanding of the biology of KS may allow better methodology to be developed to more effectively combat tumourogenic processes

    Gingival fibromatosis: clinical, molecular and therapeutic issues

    Full text link
    corecore