25 research outputs found

    Basement membrane proteoglycans: Modulators Par Excellence of cancer growth and angiogenesis

    Full text link

    How do red knots Calidris canutus leave Northwest Australia in May and reach the breeding grounds in June? Predictions of stopover times, fuelling rates and prey quality in the Yellow Sea

    No full text
    In general, Arctic-breeding waders leave non-breeding grounds in Australasia from March (New Zealand) to mid-April (Northwest Australia). Here we provide evidence from radio-tracking and visual observations that many red knots Calidris canutus do not leave Roebuck Bay, Northwest Australia, until early or mid-May. Late-departing red knots probably belong to the subspecies piersmai, which breeds on the New Siberian Islands, 10,400 km from Northwest Australia. Based on comparisons of temperatures on the breeding grounds of different knot subspecies, we predict that piersmai knots would not arrive on the breeding grounds until early June, leaving at most 3–4 weeks refuelling in Asia. Using a model of fuelling capacity in relation to prey quality and gizzard mass, we show that these knots must fuel very differently in Australia and Asia. In Australia, knots have seemingly suboptimal gizzard sizes and deposit fuel slowly. In the Yellow Sea, birds could only fuel up within the available time if they either enlarged their gizzards substantially or encountered prey qualities much higher than in Australia, for which we provide quantitative predictions.

    Behaviourally mediated indirect effects: interference competition increases predation mortality in foraging redshanks

    No full text
    The effect of competition for a limiting resource on the population dynamics of competitors is usually assumed to operate directly through starvation, yet may also affect survival indirectly through behaviourally mediated effects that affect risk of predation. Thus, competition can affect more than two trophic levels, and we aim here to provide an example of this.We show that the foraging success of redshanks Tringa totanus (L.) foraging on active prey was highest in the front of flocks, whereas this was not the case for redshanks foraging on inactive prey. Also, when foraging on active prey, foraging success in a flock decreased as more birds passed through a patch, while overall foraging success was not lower on subsequent visits to the same patch. Thus, redshanks foraging on active prey suffered from interference competition, whereas this was not the case for redshanks foraging on inactive prey.This interference competition led to differences in activity: redshanks attaining a lower foraging success had a higher walking rate. Greater activity was associated with wider flock spacing and shorter distances to cover, which has previously been shown to increase predation risk and mortality from sparrowhawks Accipiter nisus (L.).We conclude that behavioural adaptations of prey species can lead to interference competition in foraging redshanks, and thus can affect their predation risk and mortality through increased activity. This study is one of the first to show how interference competition can be a mechanism for behaviourally mediated indirect effects, and provides further evidence for the suggestion that a single species occupying an intermediate trophic level may be simultaneously top-down controlled by a predator and bottom-up controlled by a behavioural response of its prey
    corecore