1,669 research outputs found

    Theory of the Bloch Oscillating Transistor

    Full text link
    The Bloch oscillating transistor (BOT) is a device, where single electron current through a normal tunnel junction can be used to enhance Cooper pair current in a mesoscopic Josephson junction leading to signal amplification. In this paper we develop a theory, where the BOT dynamics is described as a two-level system. The theory is used to predict current-voltage characteristics and small-signal response. Transition from stable operation into hysteretic regime is studied. By identifying the two-level switching noise as the main source of fluctuations, the expressions for equivalent noise sources and the noise temperature are derived. The validity of the model is tested by comparing the results with simulations.Comment: 11 pages, 8 figure

    Control of Coulomb blockade in a mesoscopic Josephson junction using single electron tunneling

    Get PDF
    We study a circuit where a mesoscopic Josephson junction (JJ) is embedded in an environment consisting of a large bias resistor and a normal metal - superconductor tunnel junction (NIS). The effective Coulomb blockade of the JJ can be controlled by the tunneling current through the NIS junction leading to transistor-like characteristics. We show using phase correlation theory and numerical simulations that substantial current gain with low current noise (in≲1i_{n}\lesssim 1 fA/Hz\sqrt{\text{Hz}}) and noise temperature (≲\lesssim 0.1 K) can be achieved. Good agreement between our numerical simulations and experimental results is obtained.Comment: 5 pages, 4 figures, RevTE

    Description of self-synchronization effects in distributed Josephson junction arrays using harmonic analysis and power balance

    Full text link
    Power generation and synchronisation in Josephson junction arrays have attracted attention for a long time. This stems from fundamental interest in nonlinear coupled systems as well as from potential in practical applications. In this paper we study the case of an array of junctions coupled to a distributed transmission line either driven by an external microwave or in a self-oscillating mode. We simplify the theoretical treatment in terms of harmonic analysis and power balance. We apply the model to explain the large operation margins of SNS- and SINIS-junction arrays. We show the validity of the approach by comparing with experiments and simulations with self-oscillating es-SIS junction arrays.Comment: 5 pages, 3 figure

    Differential Bloch Oscillating Transistor Pair

    Full text link
    We examine a Bloch Oscillating Transistor pair as a differential stage for cryogenic low-noise measurements. Using two oppositely biased, nearly symmetric Bloch Oscillating Transistors, we measured the sum and difference signals in the current gain and transconductance modes while changing the common mode signal, either voltage or current. From the common mode rejection ratio we find values ∼20\sim 20 dB even under non-optimal conditions. We also characterize the noise properties and obtain excellent noise performance for measurements having source impedances in the MΩ\Omega range.Comment: 8 pages, 3 figure

    RSFQ devices with selective dissipation for quantum information processing

    Full text link
    We study the possibility to use frequency dependent damping in RSFQ circuits as means to reduce dissipation and consequent decoherence in RSFQ/qubit circuits. We show that stable RSFQ operation can be achieved by shunting the Josephson junctions with an RCRC circuit instead of a plain resistor. We derive criteria for the stability of such an arrangement, and discuss the effect on decoherence and the optimisation issues. We also design a simple flux generator aimed at manipulating flux qubits

    Dynamics of Bloch oscillating transistor near the bifurcation threshold

    Get PDF
    The tendency to bifurcate can often be utilized to improve performance characteristics of amplifiers or even to build detectors. The Bloch oscillating transistor is such a device. Here, we show that bistable behavior can be approached by tuning the base current and that the critical value depends on the Josephson coupling energy EJ of the device. We demonstrate current-gain enhancement for the device operating near the bifurcation point at small EJ. From our results for the current gains at various EJ, we determine the bifurcation threshold on the EJ-base current plane. The bifurcation threshold curve can be understood using the interplay of interband and intraband tunneling events.Peer reviewe
    • …
    corecore