30 research outputs found

    Volume Changes After Traumatic Spinal Cord Injury in Animal Studies - A Systematic Review

    Get PDF
    There are limited data on the lesion volume changes following spinal cord injury (SCI). In this study, a meta-analysis was performed to evaluate the volume size changes of the injured spinal cord over time among animal studies in traumatic SCI. Following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, we conducted a comprehensive electronic search of English literature of PubMed and EMBASE databases from 1946 to 2015 concerning the time-dependent changes in the volume of the spinal cord following mechanical traumatic SCI. A hand-search was also performed for non-interventional, non-molecular, and non-review studies. Quality appraisal, data extraction, qualitative and quantitative analyses were performed afterward. Of 11,561 articles yielded from electronic search, 49 articles were assessed for eligibility after reviewing of titles, abstracts, and references. Ultimately, 11 articles were eligible for quantitative synthesis. The ratio of lesion volume to spinal cord total volume increased over time. Avascularity appeared in spinal cord 4 hours after injury. During the first week, the spinal subarachnoid space decreased. The hemorrhagic lesion size peaked in 1 week and decreased thereafter. Significant loss of gray and white matter occurred from day 3 with a slower progression of white matter damage. Changes of lesion extent over time is critical in pathophysiologic processes after SCI. Early avascularity, rapid loss of gray matter, slow progression of white matter damage, and late cavitation are the pathophysiologic key points of SCI, which could be helpful in choosing the proper intervention on a timely basis

    Fabrication and Characterization of Methylprednisolone-Loaded Polylactic Acid/Hyaluronic Acid Nanofibrous Scaffold for Soft Tissue Engineering

    Get PDF
    Previous in vitro and in vivo studies have indicated that tissue engineering scaffolds, including Schwann cells, may improve axonal regeneration, particularly in combination with Methylprednisolone as an influential neuroprotective factor. The primary aim of this study was to design composite electrospun scaffolds based on polylactic acid (PLA)/ hyaluronic acid (HA) containing various percentages (0.05–2% (w/v)) of Methylprednisolone (MP) with suitable mechanical and chemical properties for soft tissue especially to promote nerve growth. For the first time, MP was implicated in a PLA/HA nanofibrous and its effect on fiber’s properties was scrutinized as a candidate for nerve tissue

    Forced axial vibration of micro and nanobeam under axial harmonic moving and constant distributed forces via nonlocal strain gradient theory

    Full text link
    © 2020, © 2020 Taylor & Francis Group, LLC. In this paper the forced axial vibration of a nanobeam by deploying the nonlocal strain gradient theory exposed to a distributed moving force, is investigated. The assumed nanobeam in this paper is under the axial constant distributed load. The governing equations of the vibration of the nanobeam are obtained via the classic beam theory and the Hamilton principle. The determined partial differential equations are converted to differential equations by applying the assumed modes method. The dynamic axial displacement of the nanobeam along its length, is obtained by solving the differential equations via the convolution integral. The effect of length scale parameter, nonlocal parameter, velocity parameter, the constant distributed load and the excitation frequency on the maximum nondimensional dynamic axial displacement of the nanobeam are analyzed. Accordingly, the effect of these two parameters on the maximum nondimensional axial displacement of the nanobeam under the harmonic moving load is of significance importance

    Pathways leading to prevention of fatal and non-fatal cardiovascular disease: An interaction model on 15 years population-based cohort study

    Get PDF
    Background: A comprehensive study on the interaction of cardiovascular disease (CVD) risk factors is critical to prevent cardiovascular events. The main focus of this study is thus to understand direct and indirect relationships between different CVD risk factors. Methods: A longitudinal data on adults aged ≥35 years, who were free of CVD at baseline, were used in this study. The endpoints were CVD events, whereas their measurements were demographic, lifestyle components, socio-economics, anthropometric measures, laboratory findings, quality of life status, and psychological factors. A Bayesian structural equation modelling was used to determine the relationships among 21 relevant factors associated with total CVD, stroke, acute coronary syndrome (ACS), and fatal CVDs. Results: In this study, a total of 3161 individuals with complete information were involved in the study. A total of 407 CVD events, with an average age of 54.77(10.66) years, occurred during follow-up. The causal associations between six latent variables were identified in the causal network for fatal and non-fatal CVDs. Lipid profile, with the coefficient of 0.26 (0.01), influenced the occurrence of CVD events as the most critical factor, while it was indirectly mediated through risky behaviours and comorbidities. Lipid profile at baseline was influenced by a wide range of other protective factors, such as quality of life and healthy lifestyle components. Conclusions: Analysing a causal network of risk factors revealed the flow of information in direct and indirect paths. It also determined predictors and demonstrated the utility of integrating multi-factor data in a complex framework to identify novel preventable pathways to reduce the risk of CVDs.Medicine, Faculty ofNon UBCPopulation and Public Health (SPPH), School ofReviewedFacult

    Improving motor neuron-like cell differentiation of hEnSCs by the combination of epothilone B loaded PCL microspheres in optimized 3D collagen hydrogel

    Get PDF
    Spinal cord regeneration is limited due to various obstacles and complex pathophysiological events after injury. Combination therapy is one approach that recently garnered attention for spinal cord injury (SCI) recovery. A composite of three-dimensional (3D) collagen hydrogel containing epothilone B (EpoB)-loaded polycaprolactone (PCL) microspheres (2.5 ng/mg, 10 ng/mg, and 40 ng/mg EpoB/PCL) were fabricated and optimized to improve motor neuron (MN) differentiation efficacy of human endometrial stem cells (hEnSCs). The microspheres were characterized using liquid chromatography-mass/mass spectrometry (LC-mas/mas) to assess the drug release and scanning electron microscope (SEM) for morphological assessment. hEnSCs were isolated, then characterized by flow cytometry, and seeded on the optimized 3D composite. Based on cell morphology and proliferation, cross-linked collagen hydrogels with and without 2.5 ng/mg EpoB loaded PCL microspheres were selected as the optimized formulations to compare the effect of EpoB release on MN differentiation. After differentiation, the expression of MN markers was estimated by real-time PCR and immunofluorescence (IF). The collagen hydrogel containing the EpoB group had the highest HB9 and ISL-1 expression and the longest neurite elongation. Providing a 3D permissive environment with EpoB, significantly improves MN-like cell differentiation and maturation of hEnSCs and is a promising approach to replace lost neurons after SCI
    corecore