28 research outputs found

    Clonal Hematopoiesis Before, During, and After Human Spaceflight.

    Get PDF
    Clonal hematopoiesis (CH) occurs when blood cells harboring an advantageous mutation propagate faster than others. These mutations confer a risk for hematological cancers and cardiovascular disease. Here, we analyze CH in blood samples from a pair of twin astronauts over 4 years in bulk and fractionated cell populations using a targeted CH panel, linked-read whole-genome sequencing, and deep RNA sequencing. We show CH with distinct mutational profiles and increasing allelic fraction that includes a high-risk, TET2 clone in one subject and two DNMT3A mutations on distinct alleles in the other twin. These astronauts exhibit CH almost two decades prior to the mean age at which it is typically detected and show larger shifts in clone size than age-matched controls or radiotherapy patients, based on a longitudinal cohort of 157 cancer patients. As such, longitudinal monitoring of CH may serve as an important metric for overall cancer and cardiovascular risk in astronauts

    Campylobacter jejuni Cytolethal Distending Toxin Promotes DNA Repair Responses in Normal Human Cells

    No full text
    Cytolethal distending toxin (CDT) is a multisubunit protein found in various gram-negative bacterial pathogens of humans which is thought to cause cell death by direct DNA damage of host cells. We sought to determine if a cellular response to DNA damage could be detected by exogenous addition of the holotoxin. Exogenous addition of the Campylobacter jejuni 81-176 CDT to primary human fibroblasts resulted in formation of Rad50 foci, which are formed around double-stranded-DNA breaks. Moreover, such foci are formed in both proliferating and nonproliferating cells that are treated with C. jejuni CDT. Fibroblasts that were intoxicated and later stimulated to proliferate failed to divide and remained arrested in the G(1) phase of the cell cycle

    Interactions of Campylobacter jejuni Cytolethal Distending Toxin Subunits CdtA and CdtC with HeLa Cells

    No full text
    Campylobacter jejuni produces a toxin, called cytolethal distending toxin (CDT), which causes direct DNA damage leading to invocation of DNA damage checkpoint pathways. The affected cells arrest in G(1) or G(2) and eventually die. CDT consists of three protein subunits, CdtA, CdtB, and CdtC, with CdtB recently identified as a nuclease. However, little is known about the functions of CdtA or CdtC. In this work, enzyme-linked immunosorbent assay-based experiments were used to show, for the first time, that both CdtA and CdtC bound with specificity to the surface of HeLa cells, whereas CdtB did not. Varying the order of the addition of subunits for reconstitution of the holotoxin had no effect on activity. In addition, mutants containing deletions of conserved regions of CdtA and CdtC were able to bind to the surface of HeLa cells but were not able to participate in holotoxin assembly. Finally, both Cdt mutant subunits were able to effectively compete with CDT holotoxin in the HeLa cell binding assay
    corecore