11 research outputs found

    Microgreens Nutrition Outreach: A Novel Tool for Community-Wide Dietary Disease Prevention

    Get PDF
    Purpose: To investigate how microgreens educational programming impacts the relationship between nutrition attitudes and healthy eating habits. Methods: A three-part workshop in Philadelphia, PA that consisted of a pre-survey, presentation, and microgreens kit assembly session was held. A post-survey was distributed electronically 1 week after the event. Results: 9 participants voluntarily attended the workshop and completed the pre-survey, and one-third of the participants submitted post-survey feedback. Participants were middle-aged, Black women from the Allegheny West neighborhood of Philadelphia, a predominantly (97.5%) Black neighborhood. The survey showed microgreens were well-received and suited for urban communities with little space and cold weather. Microgreens garnered interest in trying new vegetables and growing fresh foods. Conclusions: Microgreens outreach serves as a novel, low-cost, sustainable tool that can effectively educate about nutrition and encourage healthy dietary habits

    Altered glycosidase Activities at Physiological pH in the Pathogenesis of Sepsis

    No full text
    Aziz P, Haslund-Gourley B, Heithoff D, et al. Altered glycosidase Activities at Physiological pH in the Pathogenesis of Sepsis. In: FASEB JOURNAL. Vol 34. Hoboken: Wiley; 2020.Glycosidases are hydrolytic enzymes that are primarily studied in the context of intracellular catabolic pathways within the lysosome. Reductions in circulating glycosidase activities have been linked to lysosomal storage diseases and are typically detected in the blood acidified to mimic lysosomal pH. There are also instances of lysosomal storage diseases linked to increased glycosidase activities in blood circulation wherein the mannose‐6‐phosphate‐dependent trafficking is rendered dysfunctional. In addition, changes in circulating glycosidase activities have been associated with other syndromes including cancer, arthritis, alcohol abuse, sepsis, and colitis. We recently discovered that glycosidases present in multiple cell types and the sera and plasma are involved in the aging of secreted and cell surface glycoproteins. The exo‐glycosidase activities of endogenous circulating glycosidases generate the stepwise loss of glycan linkages over time as glycoproteins age in circulation, sequentially exposing underlying glycan linkages starting with the removal of the terminally‐positioned sialic acids. More is known of the neuraminidases in this first step and the role of asialoglycoprotein lectin receptors that can bind and endocytose the previously underlying and cryptic galactose ligands. We have optimized the detection of glycosidases involving those with galactosidase, glucosaminidase, mannosidase, and fucosidase activities using fluorimetric substrates in blood serum and plasma at physiological pH 7.4. We found all four glycosidase activities significantly above background in the blood and plasma at normal basal levels among healthy mouse and human species. We also identify the source of these glycosidases using glycosidase‐deficient mouse strains. We further present these measurements of normality and origin in comparison with measurements made during the onset and progression of sepsis caused by different pathogens in mice and humans. Our findings to be presented include the determinations of specific activities of glycosidases in response to experimental sepsis in the mouse caused by each of the five different clinically‐derived bacterial pathogens, and the discovery of a specific change in glycosidase activity statistically linked to a poor outcome (death) in human sepsis patients

    Large-Scale Sequencing of <i>Borreliaceae</i> for the Construction of Pan-Genomic-Based Diagnostics

    No full text
    The acceleration of climate change has been associated with an alarming increase in the prevalence and geographic range of tick-borne diseases (TBD), many of which have severe and long-lasting effects—particularly when treatment is delayed principally due to inadequate diagnostics and lack of physician suspicion. Moreover, there is a paucity of treatment options for many TBDs that are complicated by diagnostic limitations for correctly identifying the offending pathogens. This review will focus on the biology, disease pathology, and detection methodologies used for the Borreliaceae family which includes the Lyme disease agent Borreliella burgdorferi. Previous work revealed that Borreliaceae genomes differ from most bacteria in that they are composed of large numbers of replicons, both linear and circular, with the main chromosome being the linear with telomeric-like termini. While these findings are novel, additional gene-specific analyses of each class of these multiple replicons are needed to better understand their respective roles in metabolism and pathogenesis of these enigmatic spirochetes. Historically, such studies were challenging due to a dearth of both analytic tools and a sufficient number of high-fidelity genomes among the various taxa within this family as a whole to provide for discriminative and functional genomic studies. Recent advances in long-read whole-genome sequencing, comparative genomics, and machine-learning have provided the tools to better understand the fundamental biology and phylogeny of these genomically-complex pathogens while also providing the data for the development of improved diagnostics and therapeutics

    Host glycosylation of immunoglobulins impairs the immune response to acute Lyme diseaseResearch in context

    No full text
    Summary: Background: Lyme disease is caused by the bacteria Borreliella burgdorferi sensu lato (Bb) transmitted to humans from the bite of an infected Ixodes tick. Current diagnostics for Lyme disease are insensitive at the early disease stage and they cannot differentiate between active infections and people with a recent history of antibiotic-treated Lyme disease. Methods: Machine learning technology was utilized to improve the prediction of acute Lyme disease and identify sialic acid and galactose sugar structures (N-glycans) on immunoglobulins associated specifically at time points during acute Lyme disease time. A plate-based approach was developed to analyze sialylated N-glycans associated with anti-Bb immunoglobulins. This multiplexed approach quantitates the abundance of Bb-specific IgG and the associated sialic acid, yielding an accuracy of 90% in a powered study. Findings: It was demonstrated that immunoglobulin sialic acid levels increase during acute Lyme disease and following antibiotic therapy and a 3-month convalescence, the sialic acid level returned to that found in healthy control subjects (p < 0.001). Furthermore, the abundance of sialic acid on Bb-specific IgG during acute Lyme disease impaired the host’s ability to combat Lyme disease via lymphocytic receptor FcγRIIIa signaling. After enzymatically removing the sialic acid present on Bb-specific antibodies, the induction of cytotoxicity from acute Lyme disease patient antigen-specific IgG was significantly improved. Interpretation: Taken together, Bb-specific immunoglobulins contain increased sialylation which impairs the host immune response during acute Lyme disease. Furthermore, this Bb-specific immunoglobulin sialyation found in acute Lyme disease begins to resolve following antibiotic therapy and convalescence. Funding: Funding for this study was provided by the Coulter-Drexel Translational Research Partnership Program as well as from a Faculty Development Award from the Drexel University College of Medicine Institute for Molecular Medicine and Infectious Disease and the Department of Microbiology and Immunology

    A longitudinal study of naloxone opioid overdose awareness and reversal training for first-year medical students: specific elements require reinforcement.

    No full text
    BACKGROUND: The opioid epidemic is a progressively worsening public health crisis that continues to impact healthcare system strategies such as overdose reversal and destigmatization. Even among healthcare professionals, there remains a lack of confidence in naloxone administration and a prevalence of stigma. While training can play a major impact in reducing these shortcomings, the long-term effectiveness has yet to be characterized in training healthcare professionals. This study examined the long-term retention of opioid overdose awareness and reversal training (OOART) by evaluating performance at two-time intervals, immediately post-training and at a 3-month follow-up. METHODS: Voluntary training was offered to first-year (M1) medical students at the Drexel University College of Medicine in 2021. At this training, 118 students completed training, 95 completed the post-training survey, and 42 completed the 3-month follow-up. RESULTS: Opioid reversal knowledge questions assessed significantly increased scores post-training and at the 3-month follow-up. In three of the attitude questions, scores were improved at both follow-up timepoints. In addition, three attitude questions indicating a participant's confidence to respond to an opioid overdose situation increased directly after the training, but regressed at the 3-month follow-up. The remaining questions did not show any statistical difference across the survey intervals. CONCLUSIONS: This study establishes that while OOART provides participants with the knowledge of how to respond to an opioid overdose, the retention of this knowledge at a 3-month interval is reduced. The results were mixed for longitudinal assessment of participant's attitudes toward people with opioid use disorder. Some positive increases in attitudes were retained at the 3-month interval, while others trended back toward pre-training levels. These results support the effectiveness of the training but also provide evidence that OOART must be reinforced often

    Excursions of blood glycosidase activities in the pathogenesis and prognosis of Sepsis

    No full text
    Aziz PV, Lewis BJ, Haslund-Gourley BS, et al. Excursions of blood glycosidase activities in the pathogenesis and prognosis of Sepsis. Glycobiology . 2021;31(12):1700

    Establishment of Blood Glycosidase Activities and their Excursions in Sepsis

    No full text
    Smith K, Haslund-Gourley BS, Aziz PV, et al. Establishment of Blood Glycosidase Activities and their Excursions in Sepsis. Glycobiology . 2022;32(11):1034-1035

    Establishment of blood glycosidase activities and their excursions in sepsis

    No full text
    Haslund-Gourley BS, Aziz PV, Heithoff DM, et al. Establishment of blood glycosidase activities and their excursions in sepsis. PNAS Nexus. 2022;1(3): pgac113.Glycosidases are hydrolytic enzymes studied principally in the context of intracellular catabolism within the lysosome. Therefore, glycosidase activities are classically measured in experimentally acidified assay conditions reflecting their low pH optima. However, glycosidases are also present in the bloodstream where they may retain sufficient activity to participate in the regulation of glycoprotein half-lives, proteostasis, and disease pathogenesis. We have, herein, established at physiological pH 7.4 in blood plasma and sera the normal ranges of four major glycosidase activities essential for blood glycoprotein remodeling in healthy mice and humans. These activities included β-galactosidase, β-N-acetylglucosaminidase, α-mannosidase, and α-fucosidase. We have identified their origins to include the mammalian genes Glb1, HexB, Man2a1, and Fuca1. In experimental sepsis, excursions of glycosidase activities occurred with differences in host responses to discrete bacterial pathogens. Among similar excursions in human sepsis, the elevation of β-galactosidase activity was a prognostic indicator of increased likelihood of patient death
    corecore