593 research outputs found
Attenuation of Rayleigh waves due to three-dimensional surface roughness: a comprehensive numerical evaluation
The phenomenon of Rayleigh wave attenuation due to surface roughness has been well studied theoretically in the literature. Three scattering regimes describing it have been identified-the Rayleigh (long wavelength), stochastic (medium wavelength), and geometric (short wavelength)-with the attenuation coefficient exhibiting a different behavior in each. Here, in an extension to our previous work, we gain further insight with regard to the existing theory, in three dimensions, using finite element (FE) modeling, under a unified approach, where the same FE modeling techniques are used regardless of the scattering regime. We demonstrate good agreement between our FE results and the theory in all scattering regimes. Additionally, following this demonstration, we extend the results to cases that lie outside the limits of validity of the theory
ARPES in the normal state of the cuprates: comparing the marginal Fermi liquid and spin fluctuation scenarios
We address the issue whether ARPES measurements of the spectral function near the Fermi surface in the normal state of near optimally doped
cuprates can distinguish between the marginal Fermi liquid scenario and the
spin-fluctuation scenario. We argue that the data for momenta near the Fermi
surface are equally well described by both theories, but this agreement is
nearly meaningless as in both cases one has to add to a large constant of yet unknown origin. We show that the data can be
well fitted by keeping only this constant term in the self-energy. To
distinguish between the two scenarios, one has to analyze the data away from
the Fermi surface, when the intrinsic piece in becomes
dominant.Comment: Accepted for publication in Europhysics Letters, Incorrect
interpretation of reference 10 correcte
Observation of the second harmonic in superconducting current-phase relation of Nb/Au/(001)YBa2Cu3Ox heterojunctions
The superconducting current-phase relation (CPR) of Nb/Au/(001)YBa2Cu3Ox
heterojunctions prepared on epitaxial c-axis oriented YBa2Cu3Ox thin films has
been measured in a single-junction interferometer. For the first time, the
second harmonic of the CPR of such junctions has been observed. The appearance
of the second harmonic and the relative sign of the first and second harmonics
of the CPR can be explained assuming, that the macroscopic pairing symmetry of
our YBa2Cu3Ox thin films is of the d+s typeComment: 11 pages, 4 figure
Fatigue state characterization of steel pipes using ultrasonic shear waves
The phenomenon of the reduction in the propagation speed of an ultrasonic wave when it travels through a fatigue zone has been well-studied in the literature. In addition, it has been established that shear waves are more severely affected by the presence of such a zone, compared with longitudinal waves. Our study uses these phenomena to develop a method able to characterize the fatigue state of steel pipes. Initially, the existing theory regarding the increased sensitivity of shear waves to the presence of fatigue is validated through measuring and comparing the change in propagation speed of both longitudinal and bulk shear waves on flat geometries, at different fatigue states. The comparison is achieved with the aid of ultrasonic speed C-scans of both longitudinal and shear waves, with the latter now being obtainable through our implementation of advances in electromagnetic acoustic transducers (EMATs) technology. EMATs have not been traditionally used for producing C-scans, and their ability do to so with adequate repeatability is demonstrated here; we show that shear wave scanning with EMATs now provides a possibility for inspection of fatigue damage on the inner surface of pressure-containing components in the nuclear power industry. We find that the change in ultrasonic wave speed is amplified when shear waves are used, with the magnitude of this amplification agreeing well with the theory. Following the verification of the theory, the use of EMATs allowed us to tailor the shear wave scanning method to pipe geometries, where C-scans with conventional piezoelectric transducers would not have been possible, with the results successfully revealing the presence of fatigue zones
Colloquium: Quantum interference of clusters and molecules
We review recent progress and future prospects of matter wave interferometry
with complex organic molecules and inorganic clusters. Three variants of a
near-field interference effect, based on diffraction by material
nanostructures, at optical phase gratings, and at ionizing laser fields are
considered. We discuss the theoretical concepts underlying these experiments
and the experimental challenges. This includes optimizing interferometer
designs as well as understanding the role of decoherence. The high sensitivity
of matter wave interference experiments to external perturbations is
demonstrated to be useful for accurately measuring internal properties of
delocalized nanoparticles. We conclude by investigating the prospects for
probing the quantum superposition principle in the limit of high particle mass
and complexity.Comment: 19 pages, 13 figures; v2: corresponds to published versio
Concept of an ionizing time-domain matter-wave interferometer
We discuss the concept of an all-optical and ionizing matter-wave
interferometer in the time domain. The proposed setup aims at testing the wave
nature of highly massive clusters and molecules, and it will enable new
precision experiments with a broad class of atoms, using the same laser system.
The propagating particles are illuminated by three pulses of a standing
ultraviolet laser beam, which detaches an electron via efficient single
photon-absorption. Optical gratings may have periods as small as 80 nm, leading
to wide diffraction angles for cold atoms and to compact setups even for very
massive clusters. Accounting for the coherent and the incoherent parts of the
particle-light interaction, we show that the combined effect of phase and
amplitude modulation of the matter waves gives rise to a Talbot-Lau-like
interference effect with a characteristic dependence on the pulse delay time.Comment: 25 pages, 5 figure
- …