92 research outputs found
The Edit Distance Transducer in Action: The University of Cambridge English-German System at WMT16
This paper presents the University of Cambridge submission to WMT16.
Motivated by the complementary nature of syntactical machine translation and
neural machine translation (NMT), we exploit the synergies of Hiero and NMT in
different combination schemes. Starting out with a simple neural lattice
rescoring approach, we show that the Hiero lattices are often too narrow for
NMT ensembles. Therefore, instead of a hard restriction of the NMT search space
to the lattice, we propose to loosely couple NMT and Hiero by composition with
a modified version of the edit distance transducer. The loose combination
outperforms lattice rescoring, especially when using multiple NMT systems in an
ensemble
Dynamic topic adaptation for improved contextual modelling in statistical machine translation
In recent years there has been an increased interest in domain adaptation techniques
for statistical machine translation (SMT) to deal with the growing amount of data from
different sources. Topic modelling techniques applied to SMT are closely related to the
field of domain adaptation but more flexible in dealing with unstructured text. Topic
models can capture latent structure in texts and are therefore particularly suitable for
modelling structure in between and beyond corpus boundaries, which are often arbitrary.
In this thesis, the main focus is on dynamic translation model adaptation to texts of
unknown origin, which is a typical scenario for an online MT engine translating web
documents. We introduce a new bilingual topic model for SMT that takes the entire
document context into account and for the first time directly estimates topic-dependent
phrase translation probabilities in a Bayesian fashion. We demonstrate our model’s
ability to improve over several domain adaptation baselines and further provide evidence
for the advantages of bilingual topic modelling for SMT over the more common
monolingual topic modelling. We also show improved performance when deriving further
adapted translation features from the same model which measure different aspects
of topical relatedness.
We introduce another new topic model for SMT which exploits the distributional
nature of phrase pair meaning by modelling topic distributions over phrase pairs using
their distributional profiles. Using this model, we explore combinations of local and
global contextual information and demonstrate the usefulness of different levels of contextual
information, which had not been previously examined for SMT. We also show
that combining this model with a topic model trained at the document-level further improves
performance. Our dynamic topic adaptation approach performs competitively
in comparison with two supervised domain-adapted systems.
Finally, we shed light on the relationship between domain adaptation and topic
adaptation and propose to combine multi-domain adaptation and topic adaptation in a
framework that entails automatic prediction of domain labels at the document level.
We show that while each technique provides complementary benefits to the overall
performance, there is an amount of overlap between domain and topic adaptation. This
can be exploited to build systems that require less adaptation effort at runtime
Recommended from our members
Neural Machine Translation Decoding with Terminology Constraints
Despite the impressive quality improvements yielded by neural machine translation (NMT) systems, controlling their translation output to adhere to user-provided terminology con- straints remains an open problem. We describe our approach to constrained neural decod- ing based on finite-state machines and multi- stack decoding which supports target-side con- straints as well as constraints with correspond- ing aligned input text spans. We demonstrate the performance of our framework on multiple translation tasks and motivate the need for constrained decoding with attentions as a means of reducing misplacement and duplication when translating user constraints
Trained MT Metrics Learn to Cope with Machine-translated References
Neural metrics trained on human evaluations of MT tend to correlate well with
human judgments, but their behavior is not fully understood. In this paper, we
perform a controlled experiment and compare a baseline metric that has not been
trained on human evaluations (Prism) to a trained version of the same metric
(Prism+FT). Surprisingly, we find that Prism+FT becomes more robust to
machine-translated references, which are a notorious problem in MT evaluation.
This suggests that the effects of metric training go beyond the intended effect
of improving overall correlation with human judgments.Comment: WMT 202
Trained MT Metrics Learn to Cope with Machine-translated References
Neural metrics trained on human evaluations of MT tend to correlate well with human judgments, but their behavior is not fully understood. In this paper, we perform a controlled experiment and compare a baseline metric that has not been trained on human evaluations (Prism) to a trained version of the same metric (Prism+FT). Surprisingly, we find that Prism+FT becomes more robust to machine-translated references, which are a notorious problem in MT evaluation. This suggests that the effects of metric training go beyond the intended effect of improving overall correlation with human judgments
- …