92 research outputs found

    The Edit Distance Transducer in Action: The University of Cambridge English-German System at WMT16

    Get PDF
    This paper presents the University of Cambridge submission to WMT16. Motivated by the complementary nature of syntactical machine translation and neural machine translation (NMT), we exploit the synergies of Hiero and NMT in different combination schemes. Starting out with a simple neural lattice rescoring approach, we show that the Hiero lattices are often too narrow for NMT ensembles. Therefore, instead of a hard restriction of the NMT search space to the lattice, we propose to loosely couple NMT and Hiero by composition with a modified version of the edit distance transducer. The loose combination outperforms lattice rescoring, especially when using multiple NMT systems in an ensemble

    Dynamic topic adaptation for improved contextual modelling in statistical machine translation

    Get PDF
    In recent years there has been an increased interest in domain adaptation techniques for statistical machine translation (SMT) to deal with the growing amount of data from different sources. Topic modelling techniques applied to SMT are closely related to the field of domain adaptation but more flexible in dealing with unstructured text. Topic models can capture latent structure in texts and are therefore particularly suitable for modelling structure in between and beyond corpus boundaries, which are often arbitrary. In this thesis, the main focus is on dynamic translation model adaptation to texts of unknown origin, which is a typical scenario for an online MT engine translating web documents. We introduce a new bilingual topic model for SMT that takes the entire document context into account and for the first time directly estimates topic-dependent phrase translation probabilities in a Bayesian fashion. We demonstrate our model’s ability to improve over several domain adaptation baselines and further provide evidence for the advantages of bilingual topic modelling for SMT over the more common monolingual topic modelling. We also show improved performance when deriving further adapted translation features from the same model which measure different aspects of topical relatedness. We introduce another new topic model for SMT which exploits the distributional nature of phrase pair meaning by modelling topic distributions over phrase pairs using their distributional profiles. Using this model, we explore combinations of local and global contextual information and demonstrate the usefulness of different levels of contextual information, which had not been previously examined for SMT. We also show that combining this model with a topic model trained at the document-level further improves performance. Our dynamic topic adaptation approach performs competitively in comparison with two supervised domain-adapted systems. Finally, we shed light on the relationship between domain adaptation and topic adaptation and propose to combine multi-domain adaptation and topic adaptation in a framework that entails automatic prediction of domain labels at the document level. We show that while each technique provides complementary benefits to the overall performance, there is an amount of overlap between domain and topic adaptation. This can be exploited to build systems that require less adaptation effort at runtime

    Trained MT Metrics Learn to Cope with Machine-translated References

    Full text link
    Neural metrics trained on human evaluations of MT tend to correlate well with human judgments, but their behavior is not fully understood. In this paper, we perform a controlled experiment and compare a baseline metric that has not been trained on human evaluations (Prism) to a trained version of the same metric (Prism+FT). Surprisingly, we find that Prism+FT becomes more robust to machine-translated references, which are a notorious problem in MT evaluation. This suggests that the effects of metric training go beyond the intended effect of improving overall correlation with human judgments.Comment: WMT 202

    Trained MT Metrics Learn to Cope with Machine-translated References

    Get PDF
    Neural metrics trained on human evaluations of MT tend to correlate well with human judgments, but their behavior is not fully understood. In this paper, we perform a controlled experiment and compare a baseline metric that has not been trained on human evaluations (Prism) to a trained version of the same metric (Prism+FT). Surprisingly, we find that Prism+FT becomes more robust to machine-translated references, which are a notorious problem in MT evaluation. This suggests that the effects of metric training go beyond the intended effect of improving overall correlation with human judgments

    Dynamic Topic Adaptation for SMT using Distributional Profiles

    Get PDF
    • …
    corecore