Neural metrics trained on human evaluations of MT tend to correlate well with
human judgments, but their behavior is not fully understood. In this paper, we
perform a controlled experiment and compare a baseline metric that has not been
trained on human evaluations (Prism) to a trained version of the same metric
(Prism+FT). Surprisingly, we find that Prism+FT becomes more robust to
machine-translated references, which are a notorious problem in MT evaluation.
This suggests that the effects of metric training go beyond the intended effect
of improving overall correlation with human judgments.Comment: WMT 202