9 research outputs found

    Cluster randomised trial and development of a sandfly sex pheromone lure to reduce Leishmania infantum infection

    Get PDF
    Introduction: Vector control tools are needed to combat leishmaniasis. A semi-synthetic version of a Lutzomyia longipalpis aggregation/sex pheromone (9-methlygermacrene-B) has been developed, and shown efficacy to attract sandflies in the lab and to chicken sheds in the field. Here, we present results from a cluster-randomised trial performed in Brazil where we test the efficacy of the pheromone deployed with insecticide, a novel lure-and-kill intervention, to reduce leishmaniasis transmission to the canine reservoir. Aim: Investigate the efficacy of sandfly sex pheromone baited + insecticide treated chicken roosts to reduce transmission of Leishmania infantum among the reservoir population (dogs). Methods: We conducted a cluster-randomised trial across 42 communities in Brazil. Pheromone lures plus insecticide were applied in 14 communities, and outcomes compared to that of 28 other communities that received either a placebo (sham lure + insecticide) or deltamethrin-impregnated collars fitted to dogs. We quantify the primary intervention effects by comparison of the number of uninfected dogs that seroconverted in each arm over the course of the 2-year trial. Results: A reduction in canine incidence is attributed to the pheromone + insecticide intervention, which is consistent across the levels of hierarchical analysis, though the errors are broad. The performance of the pheromone followed similar patterns as the collar arm which significantly reduced seroconversion incidence. Conclusion: These data represent the first trial of a synthetic vector pheromone applied in public health control, and the first cluster-randomised trial of dog collars in Brazil. Both methods show potential for the control of zoonotic visceral leishmaniasis in the Americas; developments of the pheromone lure-and-kill strategy are underway

    Integrating innovations:a qualitative analysis of referral non-completion among rapid diagnostic test-positive patients in Uganda's human African trypanosomiasis elimination programme

    Get PDF
    BACKGROUND: The recent development of rapid diagnostic tests (RDTs) for human African trypanosomiasis (HAT) enables elimination programmes to decentralise serological screening services to frontline health facilities. However, patients must still undertake multiple onwards referral steps to either be confirmed or discounted as cases. Accurate surveillance thus relies not only on the performance of diagnostic technologies but also on referral support structures and patient decisions. This study explored why some RDT-positive suspects failed to complete the diagnostic referral process in West Nile, Uganda. METHODS: Between August 2013 and June 2015, 85% (295/346) people who screened RDT-positive were examined by microscopy at least once; 10 cases were detected. We interviewed 20 RDT-positive suspects who had not completed referral (16 who had not presented for their first microscopy examination, and 4 who had not returned for a second to dismiss them as cases after receiving discordant [RDT-positive, but microscopy-negative results]). Interviews were analysed thematically to examine experiences of each step of the referral process. RESULTS: Poor provider communication about HAT RDT results helped explain non-completion of referrals in our sample. Most patients were unaware they were tested for HAT until receiving results, and some did not know they had screened positive. While HAT testing and treatment is free, anticipated costs for transportation and ancillary health services fees deterred many. Most expected a positive RDT result would lead to HAT treatment. RDT results that failed to provide a definitive diagnosis without further testing led some to question the expertise of health workers. For the four individuals who missed their second examination, complying with repeat referral requests was less attractive when no alternative diagnostic advice or treatment was given. CONCLUSIONS: An RDT-based surveillance strategy that relies on referral through all levels of the health system is inevitably subject to its limitations. In Uganda, a key structural weakness was poor provider communication about the possibility of discordant HAT test results, which is the most common outcome for serological RDT suspects in a HAT elimination programme. Patient misunderstanding of referral rationale risks harming trust in the whole system and should be addressed in elimination programmes

    Feasibility of eliminating visceral leishmaniasis from the Indian subcontinent: explorations with a set of deterministic age-structured transmission models

    No full text
    Background: Visceral leishmaniasis (VL) is a neglected tropical disease transmitted by sandflies. On the Indian subcontinent (ISC), VL is targeted for elimination as a public health problem by 2017. In the context of VL, the elimination target is defined as an annual VL incidence of < 1 per 10,000 capita at (sub-) district level. Interventions focus on vector control, surveillance and on diagnosing and treating VL cases. Many endemic areas have not yet achieved optimal control due to logistical, biological as well as technical challenges. We used mathematical modelling to quantify VL transmission dynamics and predict the feasibility of achieving the VL elimination target with current control strategies under varying assumptions about the reservoir of infection in humans. Methods: We developed three deterministic age-structured transmission models with different main reservoirs of infection in humans: asymptomatic infections (model 1), reactivation of infection after initial infection (model 2), and post kala-azar dermal leishmaniasis (PKDL; model 3). For each model, we defined four sub-variants based on different assumptions about the duration of immunity and age-patterns in exposure to sandflies. All 12 model sub-variants were fitted to data from the KalaNet study in Bihar (India) and Nepal, and the best sub-variant was selected per model. Predictions were made for optimal and sub-optimal indoor residual spraying (IRS) effectiveness for three different levels of VL endemicity. Results: Structurally different models explained the KalaNet data equally well. However, the predicted impact of IRS varied substantially between models, such that a conclusion about reaching the VL elimination targets for the ISC heavily depends on assumptions about the main reservoir of infection in humans: asymptomatic cases, recovered (immune) individuals that reactivate, or PKDL cases. Conclusions: Available data on the impact of IRS so far suggest one model is probably closest to reality (model 1). According to this model, elimination of VL (incidence of < 1 per 10,000) by 2017 is only feasible in low and medium endemic settings with optimal IRS. In highly endemic settings and settings with sub-optimal IRS, additional interventions will be required

    Policy Recommendations From Transmission Modeling for the Elimination of Visceral Leishmaniasis in the Indian Subcontinent.

    No full text
    Visceral leishmaniasis (VL) has been targeted by the World Health Organization (WHO) and 5 countries in the Indian subcontinent for elimination as a public health problem. To achieve this target, the WHO has developed guidelines consisting of 4 phases of different levels of interventions, based on vector control through indoor residual spraying of insecticide (IRS) and active case detection (ACD). Mathematical transmission models of VL are increasingly used for planning and assessing the efficacy of interventions and evaluating the intensity and timescale required to achieve the elimination target

    Elimination of visceral leishmaniasis on the Indian subcontinent: a comparison of multiple transmission models

    No full text
    On the Indian subcontinent (ISC), visceral leishmaniasis (VL) is targeted for elimination as a public health problem by 2020. The elimination target is defined as an annual VL incidence of &lt;1 per 10 000 capita at (sub-)district level. Interventions focus on vector control, surveillance and on diagnosing and treating VL cases.</p

    Elimination of visceral leishmaniasis in the Indian subcontinent: a comparison of predictions from three transmission models.

    No full text
    We present three transmission models of visceral leishmaniasis (VL) in the Indian subcontinent (ISC) with structural differences regarding the disease stage that provides the main contribution to transmission, including models with a prominent role of asymptomatic infection, and fit them to recent case data from 8 endemic districts in Bihar, India. Following a geographical cross-validation of the models, we compare their predictions for achieving the WHO VL elimination targets with ongoing treatment and vector control strategies. All the transmission models suggest that the WHO elimination target (&lt;1 new VL case per 10,000 capita per year at sub-district level) is likely to be met in Bihar, India, before or close to 2020 in sub-districts with a pre-control incidence of 10 VL cases per 10,000 people per year or less, when current intervention levels (60% coverage of indoor residual spraying (IRS) of insecticide and a delay of 40days from onset of symptoms to treatment (OT)) are maintained, given the accuracy and generalizability of the existing data regarding incidence and IRS coverage. In settings with a pre-control endemicity level of 5/10,000, increasing the effective IRS coverage from 60 to 80% is predicted to lead to elimination of VL 1-3 years earlier (depending on the particular model), and decreasing OT from 40 to 20days to bring elimination forward by approximately 1year. However, in all instances the models suggest that L. donovani transmission will continue after 2020 and thus that surveillance and control measures need to remain in place until the longer-term aim of breaking transmission is achieved

    Scientific Authority in the Creation–Evolution Debates

    No full text
    corecore