351 research outputs found

    Steady Stokes flow with long-range correlations, fractal Fourier spectrum, and anomalous transport

    Full text link
    We consider viscous two-dimensional steady flows of incompressible fluids past doubly periodic arrays of solid obstacles. In a class of such flows, the autocorrelations for the Lagrangian observables decay in accordance with the power law, and the Fourier spectrum is neither discrete nor absolutely continuous. We demonstrate that spreading of the droplet of tracers in such flows is anomalously fast. Since the flow is equivalent to the integrable Hamiltonian system with 1 degree of freedom, this provides an example of integrable dynamics with long-range correlations, fractal power spectrum, and anomalous transport properties.Comment: 4 pages, 4 figures, published in Physical Review Letter

    Multiple Breathers on a Vortex Filament

    Get PDF
    In this paper we investigate the correspondence between the Da Rios-Betchov equation, which appears in the three-dimensional motion of a vortex filament, and the nonlinear Schrödinger equation. Using this correspondence we map a set of solutions corresponding to breathers in the nonlinear Schrödinger equation to waves propagating along a vortex filament. The work presented generalizes the recently derived family of vortex configurations associated with these breather solutions to a wider class of configurations that are associated with combination homoclinic/heteroclinic orbits of the 1D self-focussing nonlinear Schrödinger equation. We show that by considering these solutions of the governing nonlinear Schrödinger equation, highly nontrivial vortex filament configurations can be obtained that are associated with a pair of breather excitations. These configurations can lead to loop-like excitations emerging from an otherwise weakly perturbed helical vortex. The results presented further demonstrate the rich class of solutions that are supported by the Da Rios-Betchov equation that is recovered within the local induction approximation for the motion of a vortex filament

    A Kelvin-wave cascade on a vortex in superfluid 4^4He at a very low temperature

    Full text link
    A study by computer simulation is reported of the behaviour of a quantized vortex line at a very low temperature when there is continuous excitation of low-frequency Kelvin waves. There is no dissipation except by phonon radiation at a very high frequency. It is shown that non-linear coupling leads to a net flow of energy to higher wavenumbers and to the development of a simple spectrum of Kelvin waves that is insensitive to the strength and frequency of the exciting drive. The results are likely to be relevant to the decay of turbulence in superfluid 4^4He at very low temperatures

    Localized induction equation and pseudospherical surfaces

    Full text link
    We describe a close connection between the localized induction equation hierarchy of integrable evolution equations on space curves, and surfaces of constant negative Gauss curvature.Comment: 21 pages, AMSTeX file. To appear in Journal of Physics A: Mathematical and Genera

    Darboux transformation for the modified Veselov-Novikov equation

    Full text link
    A Darboux transformation is constructed for the modified Veselov-Novikov equation.Comment: Latex file,8 pages, 0 figure

    The hodograph method applicability in the problem of long-scale nonlinear dynamics of a thin vortex filament near a flat boundary

    Get PDF
    Hamiltonian dynamics of a thin vortex filament in ideal incompressible fluid near a flat fixed boundary is considered at the conditions that at any point of the curve determining shape of the filament the angle between tangent vector and the boundary plane is small, also the distance from a point on the curve to the plane is small in comparison with the curvature radius. The dynamics is shown to be effectively described by a nonlinear system of two (1+1)-dimensional partial differential equations. The hodograph transformation reduces that system to a single linear differential equation of the second order with separable variables. Simple solutions of the linear equation are investigated at real values of spectral parameter λ\lambda when the filament projection on the boundary plane has shape of a two-branch spiral or a smoothed angle, depending on the sign of λ\lambda.Comment: 9 pages, revtex4, 6 eps-figure

    Slow flows of an relativistic perfect fluid in a static gravitational field

    Full text link
    Relativistic hydrodynamics of an isentropic fluid in a gravitational field is considered as the particular example from the family of Lagrangian hydrodynamic-type systems which possess an infinite set of integrals of motion due to the symmetry of Lagrangian with respect to relabeling of fluid particle labels. Flows with fixed topology of the vorticity are investigated in quasi-static regime, when deviations of the space-time metric and the density of fluid from the corresponding equilibrium configuration are negligibly small. On the base of the variational principle for frozen-in vortex lines dynamics, the equation of motion for a thin relativistic vortex filament is derived in the local induction approximation.Comment: 4 pages, revtex, no figur

    Interaction of Nonlinear Schr\"odinger Solitons with an External Potential

    Full text link
    Employing a particularly suitable higher order symplectic integration algorithm, we integrate the 1-dd nonlinear Schr\"odinger equation numerically for solitons moving in external potentials. In particular, we study the scattering off an interface separating two regions of constant potential. We find that the soliton can break up into two solitons, eventually accompanied by radiation of non-solitary waves. Reflection coefficients and inelasticities are computed as functions of the height of the potential step and of its steepness.Comment: 14 pages, uuencoded PS-file including 10 figure

    Hamiltonians for curves

    Full text link
    We examine the equilibrium conditions of a curve in space when a local energy penalty is associated with its extrinsic geometrical state characterized by its curvature and torsion. To do this we tailor the theory of deformations to the Frenet-Serret frame of the curve. The Euler-Lagrange equations describing equilibrium are obtained; Noether's theorem is exploited to identify the constants of integration of these equations as the Casimirs of the euclidean group in three dimensions. While this system appears not to be integrable in general, it {\it is} in various limits of interest. Let the energy density be given as some function of the curvature and torsion, f(κ,τ)f(\kappa,\tau). If ff is a linear function of either of its arguments but otherwise arbitrary, we claim that the first integral associated with rotational invariance permits the torsion τ\tau to be expressed as the solution of an algebraic equation in terms of the bending curvature, κ\kappa. The first integral associated with translational invariance can then be cast as a quadrature for κ\kappa or for τ\tau.Comment: 17 page

    Superfluid Flow Past an Array of Scatterers

    Full text link
    We consider a model of nonlinear superfluid flow past a periodic array of point-like scatterers in one dimension. An application of this model is the determination of the critical current of a Josephson array in a regime appropriate to a Ginzburg-Landau formulation. Here, the array consists of short normal-metal regions, in the presence of a Hartree electron-electron interaction, and embedded within a one-dimensional superconducting wire near its critical temperature, TcTc. We predict the critical current to depend linearly as A(Tc−T)A (Tc-T), while the coefficient AA depends sensitively on the sizes of the superconducting and normal-metal regions and the strength and sign of the Hartree interaction. In the case of an attractive interaction, we find a further feature: the critical current vanishes linearly at some temperature T∗T* less than TcTc, as well as at TcTc itself. We rule out a simple explanation for the zero value of the critical current, at this temperature T∗T*, in terms of order parameter fluctuations at low frequencies.Comment: 23 pages, REVTEX, six eps-figures included; submitted to PR
    • …
    corecore