86 research outputs found
Wigner Functions on a Lattice
The Wigner functions on the one dimensional lattice are studied. Contrary to
the previous claim in literature, Wigner functions exist on the lattice with
any number of sites, whether it is even or odd. There are infinitely many
solutions satisfying the conditions which reasonable Wigner functions should
respect. After presenting a heuristic method to obtain Wigner functions, we
give the general form of the solutions. Quantum mechanical expectation values
in terms of Wigner functions are also discussed.Comment: 11 pages, no figures, REVTE
Cosmological anti-deSitter space-times and time-dependent AdS/CFT correspondence
We study classes of five-dimensional cosmological solutions with negative
curvature, which are obtained from static solutions by an exchange of a spatial
and temporal coordinate, and in some cases by an analytic continuation. Such
solutions provide a suitable laboratory to address the time-dependent AdS/CFT
correspondence. For a specific example we address in detail the calculation of
the boundary stress-energy and the Wilson line and find disagreement with the
standard AdS/CFT correspondence. We trace these discrepancies to the
time-dependent effects, such as particle creation, which we further study for
specific backgrounds. We also identify specific time-dependent backgrounds that
reproduce the correct conformal anomaly. For such backgrounds the calculation
of the Wilson line in the adiabatic approximation indicates only a Coulomb
repulsion.Comment: LaTeX file, 47 pages, discussion is extended, version to appear in
PR
A comment on multiple vacua, particle production and the time dependent AdS/CFT correspondence
We give an explicit formulation of the time dependent AdS/CFT correspondence
when there are multiple vacua present in Lorentzian signature. By computing
sample two point functions we show how different amplitudes are related by
cosmological particle production. We illustrate our methods in two example
spacetimes: (a) a ``bubble of nothing'' in AdS space, and (b) an asymptotically
locally AdS spacetime with a bubble of nothing on the boundary. In both cases
the alpha vacua of de Sitter space make an interesting appearance.Comment: 9 page
Confront Holographic QCD with Regge Trajectories of vectors and axial-vectors
We derive the general 5-dimension metric structure of the system in
type II superstring theory, and demonstrate the physical meaning of the
parameters characterizing the 5-dimension metric structure of the
\textit{holographic} QCD model by relating them to the parameters describing
Regge trajectories. By matching the spectra of vector mesons with
deformed soft-wall model, we find that the spectra of vector mesons
can be described very well in the soft-wall model, i.e,
soft-wall model. We then investigate how well the soft-wall
model can describe the Regge trajectory of axial-vector mesons . We find
that the constant component of the 5-dimension mass square of axial-vector
mesons plays an efficient role to realize the chiral symmetry breaking in the
vacuum, and a small negative correction in the 5-dimension mass square is
helpful to realize the chiral symmetry restoration in high excitation states.Comment: 9 pages, 3 figure and 3 tables, one section adde
Interatomic potentials for atomistic simulations of the Ti-Al system
Semi-empirical interatomic potentials have been developed for Al, alpha-Ti,
and gamma-TiAl within the embedded atomic method (EAM) by fitting to a large
database of experimental as well as ab-initio data. The ab-initio calculations
were performed by the linear augmented plane wave (LAPW) method within the
density functional theory to obtain the equations of state for a number of
crystal structures of the Ti-Al system. Some of the calculated LAPW energies
were used for fitting the potentials while others for examining their quality.
The potentials correctly predict the equilibrium crystal structures of the
phases and accurately reproduce their basic lattice properties. The potentials
are applied to calculate the energies of point defects, surfaces, planar faults
in the equilibrium structures. Unlike earlier EAM potentials for the Ti-Al
system, the proposed potentials provide reasonable description of the lattice
thermal expansion, demonstrating their usefulness in the molecular dynamics or
Monte Carlo studies at high temperatures. The energy along the tetragonal
deformation path (Bain transformation) in gamma-TiAl calculated with the EAM
potential is in a fairly good agreement with LAPW calculations. Equilibrium
point defect concentrations in gamma-TiAl are studied using the EAM potential.
It is found that antisite defects strongly dominate over vacancies at all
compositions around stoichiometry, indicating that gamm-TiAl is an antisite
disorder compound in agreement with experimental data.Comment: 46 pages, 6 figures (Physical Review B, in press
Response of Holographic QCD to Electric and Magnetic Fields
We study the response of the Sakai-Sugimoto holographic model of large N_c
QCD at nonzero temperature to external electric and magnetic fields. In the
electric case we find a first-order insulator-conductor transition in both the
confining and deconfining phases of the model. In the deconfining phase the
conductor is described by the parallel 8-brane-anti-8-brane embedding with a
current of quarks and anti-quarks. We compute the conductivity and show that it
agrees precisely with a computation using the Kubo formula. In the confining
phase we propose a new kind of 8-brane embedding, corresponding to a baryonic
conductor. In the magnetic field case we show that the critical temperature for
chiral-symmetry restoration in the deconfined phase increases with the field
and approaches a finite value in the limit of an infinite magnetic field. We
also illustrate the nonlinear behavior of the electric and magnetic
susceptibilities in the different phases.Comment: 18 pages, 19 figures; reference added, version published in JHE
Holographic Hydrodynamics with a Chemical Potential
We consider five-dimensional gravity coupled to a negative cosmological
constant and a single U(1) gauge field, including a general set of
four-derivative interactions. In this framework, we construct charged planar
AdS black hole solutions perturbatively and consider the thermal and
hydrodynamic properties of the plasma in the dual CFT. In particular, we
calculate the ratio of shear viscosity to entropy density and argue that the
violation of the KSS bound is enhanced in the presence of a chemical potential.
We also compute the electrical conductivity and comment on various conjectured
bounds related to this coefficient.Comment: v2: comparison to supergravity lagrangian added, references added,
typos fixe
Genotoxic effect induced by hydrogen peroxide in human hepatoma cells using comet assay
Background: Hydrogen peroxide is a common reactive oxygen intermediate generated by variousforms of oxidative stress. Aims: The aim of this study was to investigate the DNA damage capacity ofH2O2 in HepG2 cells. Methods: Cells were treated with H2O2 at concentrations of 25 μM or 50 μM for5 min, 30 min, 40 min, 1 h or 24 h in parallel. The extent of DNA damage was assessed by the cometassay. Results: Compared to the control, DNA damage by 25 μM and 50 μM H2O2 increasedsignificantly with increasing incubation time up to 1 h, but it was not increased at 24 h. Conclusions:Our Findings confirm that H2O2 is a typical DNA damage inducing agent and thus is a good modelsystem to study the effects of oxidative stress. DNA damage in HepG2 cells increased significantlywith H2O2 concentration and time of incubation but later decreased likely due to DNA repairmechanisms and antioxidant enzyme
Estimulação hormonal, punção folicular transvaginal e avaliação ovocitária em bezerras pré-púberes da raça Nelore (Bos taurus indicus)
Avaliação da atividade cicatrizante do jucá (Caesalpinia ferrea Mart. ex Tul. var. ferrea) em lesões cutâneas de caprinos
- …
