43 research outputs found
Texture analysis of myopathy
Given the recent technological advent of muscle ultrasound (US), classification of various myopathic conditions could be possible, especially by mathematical analysis of muscular fine structure called texture analysis. We prospectively enrolled patients with three neuromuscular conditions and their lower leg US images were quantitatively analyzed by texture analysis and machine learning methodology in the following subjects : Inclusion body myositis (IBM) [N=11] ; myotonic dystrophy type 1 (DM1) [N=19] ; polymyositis/dermatomyositis (PM-DM) [N=21]. Although three-group analysis achieved up to 58.8% accuracy, two-group analysis of IBM plus PM-DM versus DM1 showed 78.4% accuracy. Despite the small number of subjects, texture analysis of muscle US followed by machine learning might be expected to be useful in identifying myopathic conditions
Detection and management of cardiomyopathy in female dystrophinopathy carriers
Regular health checkups for mothers of patients with Duchenne muscular dystrophy have been performed at National Hospital Organization Tokushima Hospital since 1994. Among 43 mothers participated in this study, 28 dystrophinopathy carriers were identified. Skeletal and cardiac muscle functions of these subjects were examined. High serum creatine kinase was found in 23 subjects (82.1%). Obvious muscle weakness was present in 5 (17.8%) and had progressed from 1994 to 2015. Cardiomyopathy was observed in 15 subjects (60.0%), including dilated cardiomyopathy-like damage that was more common in the left ventricular (LV) posterior wall. Late gadolinium enhancement on cardiac MRI was found in 5 of 6 subjects, suggesting fibrotic cardiac muscle. In speckle tracking echocardiography performed seven years later, global longitudinal strain was decreased in these subjects, indicating LV myocardial contractile abnormality. These results suggest that female dystrophinopathy carriers should receive regular checkups for detection and treatment of cardiomyopathy, even if they have no cardiac symptoms
Effectiveness of 18F-FDG PET/CT in finding lung metastasis from a retroperitoneal paraganglioma
A 50-year-old woman was diagnosed with iron deficiency anemia on general medical examination. Further, contrast-enhanced abdominal CT and magnetic resonance imaging revealed a large hypervascular mass with internal degeneration and necrosis in the retroperitoneal space. She was referred to our hospital for further evaluation and treatment. Because the paraganglioma was most likely as the imaging diagnosis, 123I-MIBG scintigraphy was performed. It revealed the marked abnormal accumulation in the retroperitoneal lesion indicating the paraganglioma and no other abnormal accumulation was noted. Several plasma catecholamines and their urinary metabolites were normal. On the subsequent 18F-FDG PET/CT, high FDG uptake was found in the retroperitoneal lesion (SUVmax=38). FDG uptake was also found in a small nodule at the base of the lower lobe of the right lung (SUVmax= 9.8). Contrast-enhanced imaging revealed a hypervascular nodule at the base of the right lung, suggesting pulmonary metastasis of a paraganglioma. The abdominal lesion and right lung nodule were excised, and retroperitoneal paraganglioma and pulmonary metastasis were diagnosed based on the pathology findings. In this case, 18F-FDG PET/CT was useful in the search for paraganglioma metastasis. We report a relationship between 123I-MIBG accumulation and 18F-FDG uptake in paraganglioma and review the relevant literature
The whole blood transcriptional regulation landscape in 465 COVID-19 infected samples from Japan COVID-19 Task Force
「コロナ制圧タスクフォース」COVID-19患者由来の血液細胞における遺伝子発現の網羅的解析 --重症度に応じた遺伝子発現の変化には、ヒトゲノム配列の個人差が影響する--. 京都大学プレスリリース. 2022-08-23.Coronavirus disease 2019 (COVID-19) is a recently-emerged infectious disease that has caused millions of deaths, where comprehensive understanding of disease mechanisms is still unestablished. In particular, studies of gene expression dynamics and regulation landscape in COVID-19 infected individuals are limited. Here, we report on a thorough analysis of whole blood RNA-seq data from 465 genotyped samples from the Japan COVID-19 Task Force, including 359 severe and 106 non-severe COVID-19 cases. We discover 1169 putative causal expression quantitative trait loci (eQTLs) including 34 possible colocalizations with biobank fine-mapping results of hematopoietic traits in a Japanese population, 1549 putative causal splice QTLs (sQTLs; e.g. two independent sQTLs at TOR1AIP1), as well as biologically interpretable trans-eQTL examples (e.g., REST and STING1), all fine-mapped at single variant resolution. We perform differential gene expression analysis to elucidate 198 genes with increased expression in severe COVID-19 cases and enriched for innate immune-related functions. Finally, we evaluate the limited but non-zero effect of COVID-19 phenotype on eQTL discovery, and highlight the presence of COVID-19 severity-interaction eQTLs (ieQTLs; e.g., CLEC4C and MYBL2). Our study provides a comprehensive catalog of whole blood regulatory variants in Japanese, as well as a reference for transcriptional landscapes in response to COVID-19 infection
DOCK2 is involved in the host genetics and biology of severe COVID-19
「コロナ制圧タスクフォース」COVID-19疾患感受性遺伝子DOCK2の重症化機序を解明 --アジア最大のバイオレポジトリーでCOVID-19の治療標的を発見--. 京都大学プレスリリース. 2022-08-10.Identifying the host genetic factors underlying severe COVID-19 is an emerging challenge. Here we conducted a genome-wide association study (GWAS) involving 2, 393 cases of COVID-19 in a cohort of Japanese individuals collected during the initial waves of the pandemic, with 3, 289 unaffected controls. We identified a variant on chromosome 5 at 5q35 (rs60200309-A), close to the dedicator of cytokinesis 2 gene (DOCK2), which was associated with severe COVID-19 in patients less than 65 years of age. This risk allele was prevalent in East Asian individuals but rare in Europeans, highlighting the value of genome-wide association studies in non-European populations. RNA-sequencing analysis of 473 bulk peripheral blood samples identified decreased expression of DOCK2 associated with the risk allele in these younger patients. DOCK2 expression was suppressed in patients with severe cases of COVID-19. Single-cell RNA-sequencing analysis (n = 61 individuals) identified cell-type-specific downregulation of DOCK2 and a COVID-19-specific decreasing effect of the risk allele on DOCK2 expression in non-classical monocytes. Immunohistochemistry of lung specimens from patients with severe COVID-19 pneumonia showed suppressed DOCK2 expression. Moreover, inhibition of DOCK2 function with CPYPP increased the severity of pneumonia in a Syrian hamster model of SARS-CoV-2 infection, characterized by weight loss, lung oedema, enhanced viral loads, impaired macrophage recruitment and dysregulated type I interferon responses. We conclude that DOCK2 has an important role in the host immune response to SARS-CoV-2 infection and the development of severe COVID-19, and could be further explored as a potential biomarker and/or therapeutic target
Analysis of the structure and neuritogenic activity of chondroitin sulfate/dermatan sulfate hybrid chains from porcine fetal membranes
The amniotic membrane (AM) is the innermost layer of fetal membranes and possesses various biological activities. Although the mechanism underlying these biological activities remains unclear, unique components seem to be involved. AM contains various extracellular matrix components such as type I collagen, laminin, fibronectin, hyaluronic acid, and proteoglycans bearing chondroitin sulfate/dermatan sulfate (CS/DS) glycosaminoglycan side chains. To elucidate the function of CS/DS in AM, the structure and bioactivity of the CS/DS chains from porcine fetal membranes (FM-CS/DS) were investigated. A compositional analysis using various chondroitinases revealed that the characteristic DS domain comprised of iduronic acid-containing disaccharide units is embedded in FM-CS/DS, along with predominant disaccharide units, GlcA-GalNAc, GlcA-GalNAc(4-O-sulfate), and GlcA-GalNAc (6-O-sulfate), where GlcA and GalNAc represent D-glucuronic acid and N-acetyl-D-galactosamine, respectively. The average molecular size of FM-CS/DS chains was unusually large and estimated to be 250 - 300 kDa. The FM-CS/DS chains showed neurite outgrowth-promoting activity with a dendrite-like morphology, which was eliminated by digestion with chondroitinase ABC of the CS/DS chains. This activity was suppressed by antibodies against growth factors including pleiotrophin, midkine, and fibroblast growth factor-2. The binding of these growth factors to FM-CS/DS was also demonstrated by surface plasmon resonance spectroscopy