19 research outputs found

    Electron Microscopy Observation of Biomineralization within Wood Tissues of Kurogaki

    Get PDF
    Interactions between minerals and microorganisms play a crucial role in living wood tissues. However, living wood tissues have never been studied in the field. Fortunately, we found several kurogaki (black persimmon; Diospyros kaki) trees at Tawara in Kanazawa, Ishikawa, Japan. Here, we report the characterization of kurogaki based on scanning electron microscopy equipped with energy-dispersive spectroscopy (SEM-EDS) and transmission electron microscopy (TEM), associated with inductively coupled plasma-mass spectrometry (ICP-MS) analyses, X-ray fluorescence analyses (XRF) and X-ray powder diffraction (XRD) analyses. This study aims to illustrate the ability of various microorganisms associated with biominerals within wood tissues of kurogaki, as shown by SEM-EDS elemental content maps and TEM images. Kurogaki grows very slowly and has extremely hard wood, known for its striking black and beige coloration, referred to as a “peacock pattern”. However, the scientific data for kurogaki are very limited. The black “peacock pattern” of the wood mainly comprises cellulose and high levels of crystal cristobalite. As per the XRD results, the black taproot contains mineralized 7 Å clays (kaolinite), cellulose, apatite and cristobalite associated with many microorganisms. The chemical compositions of the black and beige portions of the black persimmon tree were obtained by ICP-MS analyses. Particular elements such as abundant Ca, Mg, K, P, Mn, Ba, S, Cl, Fe, Na, and Al were concentrated in the black region, associated with Pb and Sr elements. SEM-EDS semi-qualitative analyses of kurogaki indicated an abundance of P and Ca in microorganisms in the black region, associated with Pb, Sr, S, Mn, and Mg elements. On the other hand, XRF and XRD mineralogical data showed that fresh andesite, weathered andesite, and the soils around the roots of kurogaki correlate with biomineralization of the black region in kurogaki roots, showing clay minerals (kaolinite) and cristobalite formation. In conclusion, we describe how the biominerals in the black region in the cellulose within wood tissues grow chemically and biologically in the sap under the conditions associated with the beige portions of the taproot. This can explain why the crystals produce the “peacock pattern” in the kurogaki formed during the year. We conclude that kurogaki microbiota are from bacteria in the andesitic weathered soil environment, which produce silicification. In other words, the patterned portions of kurogaki consist of silicified wood

    Cutavirus on the skin in an Asian cohort: identification of a novel geographically related genotype

    No full text
    Abstract Background Cutavirus (CuV) is the newest human parvovirus and is currently receiving increasing attention because of its possible association with cutaneous T-cell lymphoma. Despite the pathogenetic potential of CuV, it has been detected in normal skin; however, little is known about the prevalence, infection levels, and genetic variations of this virus in the skin of the general population. Methods We investigated the CuV DNA prevalence and viral loads concerning age, sampling location, and gender using 678 skin swabs collected from the normal-appearing skins of 339 Japanese participants aged 2–99 years. Phylogenetic analyses were also conducted based on the near-full-length CuV sequences identified in this study. Results Both the CuV DNA prevalence and viral loads were significantly higher in the skin of elderly persons aged ≥60 years compared with those of persons aged < 60 years. CuV DNA tended to persist in the skin of elderly individuals. No significant difference in viral loads was observed between the skin of the upper arm and the skin of the forehead in CuV DNA-positive specimens. Significantly higher viral loads were evident in men vs. women, although no gender-associated differences in viral prevalence were noted. Phylogenetic analyses demonstrated the existence of Japanese-specific viruses that were genetically distinct from viruses prevalent in other areas, especially Europe. Conclusions This large study suggests that high levels of CuV DNA are prevalent on the skin of elderly adults. Our findings also indicated the prevalence of geographically related CuV genotypes. A follow-up study of this cohort should provide helpful information on whether CuV may become pathogenic

    Additional file 3 of Cutavirus on the skin in an Asian cohort: identification of a novel geographically related genotype

    No full text
    Additional file 3: table S2 Nucleotide identities between the near-full-length cutavirus sequences (4455 bp) identified in the current study

    Additional file 2 of Cutavirus on the skin in an Asian cohort: identification of a novel geographically related genotype

    No full text
    Additional file 2: figure S1 Phylogenetic analysis of cutavirus based on complete VP2 sequences

    Electron Microscopy Observation of Biomineralization within Wood Tissues of Kurogaki

    No full text
    Interactions between minerals and microorganisms play a crucial role in living wood tissues. However, living wood tissues have never been studied in the field. Fortunately, we found several kurogaki (black persimmon; Diospyros kaki) trees at Tawara in Kanazawa, Ishikawa, Japan. Here, we report the characterization of kurogaki based on scanning electron microscopy equipped with energy-dispersive spectroscopy (SEM-EDS) and transmission electron microscopy (TEM), associated with inductively coupled plasma-mass spectrometry (ICP-MS) analyses, X-ray fluorescence analyses (XRF) and X-ray powder diffraction (XRD) analyses. This study aims to illustrate the ability of various microorganisms associated with biominerals within wood tissues of kurogaki, as shown by SEM-EDS elemental content maps and TEM images. Kurogaki grows very slowly and has extremely hard wood, known for its striking black and beige coloration, referred to as a “peacock pattern”. However, the scientific data for kurogaki are very limited. The black “peacock pattern” of the wood mainly comprises cellulose and high levels of crystal cristobalite. As per the XRD results, the black taproot contains mineralized 7 Å clays (kaolinite), cellulose, apatite and cristobalite associated with many microorganisms. The chemical compositions of the black and beige portions of the black persimmon tree were obtained by ICP-MS analyses. Particular elements such as abundant Ca, Mg, K, P, Mn, Ba, S, Cl, Fe, Na, and Al were concentrated in the black region, associated with Pb and Sr elements. SEM-EDS semi-qualitative analyses of kurogaki indicated an abundance of P and Ca in microorganisms in the black region, associated with Pb, Sr, S, Mn, and Mg elements. On the other hand, XRF and XRD mineralogical data showed that fresh andesite, weathered andesite, and the soils around the roots of kurogaki correlate with biomineralization of the black region in kurogaki roots, showing clay minerals (kaolinite) and cristobalite formation. In conclusion, we describe how the biominerals in the black region in the cellulose within wood tissues grow chemically and biologically in the sap under the conditions associated with the beige portions of the taproot. This can explain why the crystals produce the “peacock pattern” in the kurogaki formed during the year. We conclude that kurogaki microbiota are from bacteria in the andesitic weathered soil environment, which produce silicification. In other words, the patterned portions of kurogaki consist of silicified wood

    Mineralogical and Elemental Composition of Pectinatella magnifica and Its Statoblasts

    No full text
    Several massive colonies of Pectinatella magnifica have been observed during the summer almost every year since 1974 in agricultural reservoir ponds and lakes with dirty freshwater environments in Ishikawa, Japan, which has posed serious environmental problems on the shores of Hokuriku District. We collected Pectinatella magnifica during the summer at Kahokugata Lake and Makiyama agricultural reservoir pond in June and July 2016. However, scientific data for the statoblasts of Pectinatella magnifica are limited. Our results for scanning electron microscopy equipped with energy-dispersive spectroscopy (SEM-EDS), inductively coupled plasma-mass spectrometry (ICP-MS), and X-ray powder diffraction (XRD) analyses of Pectinatella magnifica indicated immobilization of the chemical elements that were involved in the mass during the summer. We also reported the characterization of an invasive species of bryozoan (Pectinatella magnifica) in lakes and ponds in Ishikawa, Japan, based on field observations in 2016. We studied the microstructure, mineralogy, chemical composition, and radioactivity associated with these organisms, using a combination of micro-techniques, SEM-EDS, associated with ICP-MS, and XRD. This study aims to illustrate the capability of Pectinatella magnifica to produce minerals within statoblasts and gelatinous material. Obtained results may indicate forming quartz, palygorskite, dolomite, bischofite, pyrolusite, and pyrite, associated with native sulfur and copper in the statoblast. The mass of gelatinous material contains talc and vermiculite as well as non-crystalline phase. The mechanism of biomineral formation has important implications for water&ndash;mineral&ndash;organism or microorganism interactions both in lower drainage basin systems, such as Kahokugata Lake, and upper water areas, such as Makiyama agricultural reservoir pond. Many types with variety of sizes and shapes of bryozoan (Pectinatella magnifica) were found in lakes and ponds in Japan. The biomineralization systems will be made available for use not only in researching bryozoans (Pectinatella magnifica), but also for environmental change systems from upstream to downstream of the lake. To date, there have been no reports on related electron microscopy observations, including the real-life occurrence of &ldquo;bioremediation&rdquo;. These observations could lead to simple methods of removing statoblasts of the invasive alien species Pectinatella magnifica from agricultural and reservoir environments, because there was limited microbial immobilization of the ions during the winter

    Mutational Upregulation of a Resistance-Nodulation-Cell Division-Type Multidrug Efflux Pump, SdeAB, upon Exposure to a Biocide, Cetylpyridinium Chloride, and Antibiotic Resistance in Serratia marcescensâ–ż

    No full text
    Serratia marcescens is an important opportunistic pathogen in hospitals, where quaternary ammonium compounds are often used for disinfection. The aim of this study is to elucidate the effect of a biocide on the emergence of biocide- and antibiotic-resistant mutants and to characterize the molecular mechanism of biocide resistance in Serratia marcescens. A quaternary ammonium compound-resistant strain, CRes01, was selected by exposing a wild-type strain of S. marcescens to cetylpyridinium chloride. The CRes01 cells exhibited 2- to 16-fold more resistance than the wild-type cells to biocides and antibiotics, including cetylpyridinium chloride, benzalkonium chloride, chlorhexidine gluconate, fluoroquinolones, tetracycline, and chloramphenicol, and showed increased susceptibilities to β-lactam antibiotics and N-dodecylpyridinium iodide. Mutant cells accumulated lower levels of norfloxacin than the parent cells in an energized state but not in a de-energized state, suggesting that the strain produced a multidrug efflux pump(s). To verify this assumption, we knocked out a putative efflux pump gene, sdeAB, in CRes01 and found that the knockout restored susceptibility to most quaternary ammonium compounds and antibiotics, to which the CRes01 strain showed resistance. On the basis of these and other results, we concluded that S. marcescens gains resistance to both biocides and antibiotics by expressing the SdeAB efflux pump upon exposure to cetylpyridinium chloride
    corecore