1,618 research outputs found

    Separation of the magnetic phases at the N\'{e}el point in the diluted spin-Peierls magnet CuGeO3

    Full text link
    The impurity induced antiferromagnetic ordering of the doped spin-Peierls magnet Cu(1-x)Mg(x)GeO(3) was studied by ESR technique. Crystals with the Mg concentration x<4% demonstrate a coexistence of paramagnetic and antiferromagnetic ESR modes. This coexistence indicates the separation of a macroscopically uniform sample in the paramagnetic and antiferromagnetic phases. In the presence of the long-range spin-Peierls order (in a sample with x=1.71%) the volume of the antiferromagnetic phase immediately below the N\'{e}el point T_N is much smaller than the volume of the paramagnetic phase. In the presence of the short-range spin-Peierls order (in samples with x=2.88%, x= 3.2%) there are comparable volumes of paramagnetic and antiferromagnetic phases at T=T_N. The fraction of the antiferromagnetic phase increases with lowering temperature. In the absence of the spin-Peierls dimerization (at x=4.57%)the whole sample exhibits the transition into the antiferromagnetic state and there is no phase separation. The phase separation is explained by the consideration of clusters of staggered magnetization located near impurity atoms. In this model the areas occupied by coherently correlated spins expand with decreasing temperature and the percolation of the ordered area through a macroscopic distance occurs.Comment: 7pages, 10 figure

    Elementary excitations, exchange interaction and spin-Peierls transition in CuGeO3_3

    Get PDF
    The microscopic description of the spin-Peierls transition in pure and doped CuGeO_3 is developed taking into account realistic details of crystal structure. It it shown that the presence of side-groups (here Ge) strongly influences superexchange along Cu-O-Cu path, making it antiferromagnetic. Nearest-neighbour and next-nearest neighbour exchange constants JnnJ_{nn} and JnnnJ_{nnn} are calculated. Si doping effectively segments the CuO_2-chains leading to Jnn(Si)0J_{nn}(Si)\simeq0 or even slightly ferromagnetic. Strong sensitivity of the exchange constants to Cu-O-Cu and (Cu-O-Cu)-Ge angles may be responsible for the spin-Peierls transition itself (``bond-bending mechanism'' of the transition). The nature of excitations in the isolated and coupled spin-Peierls chains is studied and it is shown that topological excitations (solitons) play crucial role. Such solitons appear in particular in doped systems (Cu_{1-x}Zn_xGeO_3, CuGe_{1-x}Si_xO_3) which can explain the TSP(x)T_{SP}(x) phase diagram.Comment: 7 pages, revtex, 7 Postscript figure

    Temperature Dependence of Spin and Bond Ordering in a Spin-Peierls System

    Full text link
    We investigate thermodynamic properties of a one-dimensional S=1/2 antiferromagnetic Heisenberg model coupled to a lattice distortion by a quantum Monte Carlo method. In particular we study how spin and lattice dimerize as a function of the temperature, which gives a fundamental process of the spin-Peierls transition in higher dimensions. The degree of freedom of the lattice is taken into account adiabatically and the thermal distribution of the lattice distortion is obtained by the thermal bath algorithm. We find that the dimerization develops as the temperature decreases and it converges to the value of the dimerization of the ground state at T=0. Furthermore we find that the coupling constants of spins fluctuate quite largly at high temperature and there thermodynamic properties deviate from those of the uniform chain. Doping of non-magnetic impurities causes cut of the chain into short chains with open boundary. We investigate thermodynamic properties of open chains taking relaxation of the lattice into consideration. We find that strong bonds locate at the edges and a defect of the bond alternation appears in the chain with odd number of sites, which causes enhancement of the staggered magnetic order. We find a spreaded staggered structure which indicates that the defect moves diffusively in the chain even at very low temperature.Comment: 7 pages, 17 figures; added comments on section 2 and 3, corrected typo

    First proof of concept of remote attendance for future observation strategies between Wettzell (Germany) and Concepción (Chile)

    Get PDF
    Current VLBI observations are controlled and attended locally at the radio telescopes on the basis of pre-scheduled session files. Operations have to deal with system specific station commands and individual setup procedures. Neither the scheduler nor the correlator nor the data-analyst gets real-time feedback about system parameters during a session. Changes in schedules after the start of a session by remote are impossible or at least quite difficult. For future scientific approaches, a more flexible mechanism would optimize the usage of resources at the sites. Therefore shared-observation control between world-wide telescope s, remote attendance/control as well as completely unattended-observations could be useful, in addition to the classic way to run VLBI observations. To reach these goals, the Geodetic Observatory Wettzell in cooperation with the Max-Planck-Institute for Radio Astronomy (Bonn) have developed a software extension to the existing NASA Field System for remote control. It uses the principle of a remotely accessible, autonomous process cell as server extension to the Field System on the basis of Remote Procedure Calls (RPC). Based on this technology the first completely remote attended and controlled geodetic VLBI session between Wettzell, Germany and Concepción, Chile was successfully performed over 24 hours. This first test was extremely valuable for gathering information about the differences between VLBI systems and measuring the performance of internet connections and automatic connection re-establishments. During the 24h-session, the network load, the number of sent/received packages and the transfer speed were monitor ed and captured. It was a first reliable test for the future wishes to control several telescopes with one graphical user interface on different data transfer rates over large distances in an efficient way. In addition, future developments for an authentication and user role management will be realized within the upcoming NEXPReS project

    Spin-Vacancy-Induced Long-Range Order in a New Haldane-Gap Antiferromagnet

    Full text link
    Magnetic susceptibility, high-field magnetization and inelastic neutron scattering experiments are used to study the magnetic properties of a new S=1 quasi-1-dimensional antiferromagnet PbNi2V2O8. Inter-chain interactions are shown to be almost, but not quite, strong enough to destroy the nonmagnetic singlet ground state and the energy gap in the magnetic excitation spectrum. Substituting nonmagnetic Mg2+^{2+} (S=0) ions for Ni2+^{2+} (S=1) induces a magnetically ordered state at low temperatures. To our knowledge this is the first observation of doping-induced long-range order in a Haldane-gap system.Comment: 5 pages including 4 figure

    Variational states for the spin-Peierls system

    Get PDF
    We introduce a family of Jastrow pair product states for quasi one-dimensional spin systems. Depending on a parameter they interpolate between the resonating valence bond ground state of the Haldane-Shastry model describing a spin liquid and the (dimerized) valence bond solid ground states of the Majumdar-Ghosh spin chain. These states are found to form an excellent basis for variational studies of Heisenberg chains with next nearest neighbour interaction and bond alternation as realized in the spin-Peierls system CuGeO_3.Comment: RevTeX+epsf macros, 24 pp. incl. figures, some references adde

    Localization length of a soliton from a non-magnetic impurity in a general double-spin-chain model

    Full text link
    A localization length of a free-spin soliton from a non-magnetic impurity is deduced in a general double-spin-chain model (J0J1J2J3J_0-J_1-J_2-J_3 model). We have solved a variational problem which employs the nearest-neighbor singlet-dimer basis. The wave function of a soliton is expressed by the Airy function, and the localization length (ξ)(\xi) is found to obey a power law of the dimerization (J2J3)(J_2-J_3) with an exponent -1/3; ξ(J2J3)1/3\xi\sim (J_2-J_3)^{-1/3}. This explains why NaV_2O_5 does not show the antiferromagnetic order, while CuGeO_3 does by impurity doping. When the gap exists by the bond-dimerization, a soliton is localized and no order is expected. Contrary, there is a possibility of the order when the gap is mainly due to frustration.Comment: 4 pages, REVTeX, Figures are in eps-file

    Dynamics in the dimerised and high field incommensurate phase of CuGeO3_3

    Get PDF
    Temperature (2.3<T<402.3<T<40\ K) and magnetic field (0<B<170<B<17\ T) dependent far infrared absorption spectroscopy on the spin-Peierls coumpound CuGeO3_3\ has revealed several new absorption processes in both the dimerised and high field phase of CuGeO3_3. These results are discussed in terms of the modulation of the CuGeO3_3\ structure. At low fields this is the well known spin-Peierls dimerisation. At high fields the data strongly suggests a field dependent incommensurate modulation of the lattice as well as of the spin structure.Comment: 12 pages (revtex), 2 figures (eps), csh selfextracting .uu file, To appear in PRB-Rapid Com

    Rapid Suppression of the Spin Gap in Zn-doped CuGeO_3 and SrCu_2O_3

    Full text link
    The influence of non-magnetic impurities on the spectrum and dynamical spin structure factor of a model for CuGeO3_3 is studied. A simple extension to Zn-doped SrCu2O3{\rm Sr Cu_2 O_3} is also discussed. Using Exact Diagonalization techniques and intuitive arguments we show that Zn-doping introduces states in the Spin-Peierls gap of CuGeO3_3. This effect can beunderstood easily in the large dimerization limit where doping by Zn creates ``loose'' S=1/2 spins, which interact with each other through very weak effective antiferromagnetic couplings. When the dimerization is small, a similar effect is observed but now with the free S=1/2 spins being the resulting S=1/2 ground state of severed chains with an odd number of sites. Experimental consequences of these results are discussed. It is interesting to observe that the spin correlations along the chains are enhanced by Zn-doping according to the numerical data presented here. As recent numerical calculations have shown, similar arguments apply to ladders with non-magnetic impurities simply replacing the tendency to dimerization in CuGeO3_3 by the tendency to form spin-singlets along the rungs in SrCu2_2O3_3.Comment: 7 pages, 8 postscript figures, revtex, addition of figure 8 and a section with experimental predictions, submmited to Phys. Rev. B in May 199

    An Effective Theory for Midgap States in Doped Spin Ladder and Spin-Peierls Systems: Liouville Quantum Mechanics

    Full text link
    In gapped spin ladder and spin-Peierls systems the introduction of disorder, for example by doping, leads to the appearance of low energy midgap states. The fact that these strongly correlated systems can be mapped onto one dimensional noninteracting fermions provides a rare opportunity to explore systems which have both strong interactions and disorder. In this paper we show that the statistics of the zero energy midgap wave functions in these models can be effectively described by Liouville Quantum Mechanics. This enables us to calculate the disorder averaged N-point correlation functions of these states (the explicit calculation is performed for N=2,3). We find that whilst these midgap states are typically weakly correlated, their disorder averaged correlation are power law. This discrepancy arises because the correlations are not self-averaging and averages of the wave functions are dominated by anomalously strongly correlated configurations.Comment: 13 page latex fil
    corecore