1,613 research outputs found

    Rhythmic Motion of a Droplet under a DC Electric Field

    Get PDF
    The effect of a stationary electric field on a water droplet with a diameter of several tens micrometers in oil was examined. Such a droplet exhibits repetitive translational motion between the electrodes in a spontaneous manner. The state diagram of this oscillatory motion was deduced; at 0-20 V the droplet is fixed at the surface of the electrode, at 20-70 V the droplet exhibits small-amplitude oscillatory motion between the electrodes, and at 70-100 V the droplet shows large-amplitude periodic motion between the electrodes. The observed rhythmic motion is explained in a semi-quantitative manner by using differential equations, which includes the effect of charging the droplet under an electric field. We also found that twin droplets exhibit synchronized rhythmic motion between the electrodes

    Spin-Peierls and Antiferromagnetic Phases in Cu{1-x}Zn{x}GeO{3}: A Neutron Scattering Study

    Full text link
    Comprehensive neutron scattering studies were carried out on a series of high-quality single crystals of Cu_{1-x}Zn_xGeO_3. The Zn concentration, x, was determined for each sample using Electron Probe Micro-Analysis. The measured Zn concentrations were found to be 40-80% lower than the nominal values. Nevertheless the measured concentrations cover a wide range which enables a systematic study of the effects due to Zn-doping. We have confirmed the coexistence of spin-Peierls (SP) and antiferromagnetic (AF) orderings at low temperatures and the measured phase diagram is presented. Most surprisingly, long-range AF ordering occurs even in the lowest available Zn concentration, x=0.42%, which places important constraints on theoretical models of the AF-SP coexistence. Magnetic excitations are also examined in detail. The AF excitations are sharp at low energies and show no considerable broadening as x increases indicating that the AF ordering remains long ranged for x up to 4.7%. On the other hand, the SP phase exhibits increasing disorder as x increases, as shown from the broadening of the SP excitations as well as the dimer reflection peaks.Comment: 17 preprint style pages, 9 postscript files included. Submitted to Phys. Rev. B. Also available from http://insti.physics.sunysb.edu/~mmartin/pubs.htm

    High-field Electron Spin Resonance of Cu_{1-x}Zn_{x}GeO_{3}

    Full text link
    High-Field Electron Spin Resonance measurements were made on powder samples of Cu_{1-x}Zn_{x}GeO_{3} (x=0.00, 0.01, 0.02, 0.03 and 0.05) at different frequencies (95, 110, 190, 220, 330 and 440 GHz) at low temperatures. The spectra of the doped samples show resonances whose positions are dependent on Zn concentration, frequency and temperature. The analysis of intensity variation of these lines with temperature allows us to identify them as originating in transitions within states situated inside the Spin Peierls gap. A qualitative explanation of the details of the spectra is possible if we assume that these states in the gap are associated with "loose" spins created near the Zn impurities, as recently theoreticaly predicted. A new phenomenon of quenching of the ESR signal across the Dimerized to Incommensurate phase-boundary is observed.Comment: 4 pages, 5 ps figures in the text, submitted to Phys. Rev. Let

    The LUCID model and its role in supporting land use planning processes in southern Ethiopia

    Get PDF

    Separation of the magnetic phases at the N\'{e}el point in the diluted spin-Peierls magnet CuGeO3

    Full text link
    The impurity induced antiferromagnetic ordering of the doped spin-Peierls magnet Cu(1-x)Mg(x)GeO(3) was studied by ESR technique. Crystals with the Mg concentration x<4% demonstrate a coexistence of paramagnetic and antiferromagnetic ESR modes. This coexistence indicates the separation of a macroscopically uniform sample in the paramagnetic and antiferromagnetic phases. In the presence of the long-range spin-Peierls order (in a sample with x=1.71%) the volume of the antiferromagnetic phase immediately below the N\'{e}el point T_N is much smaller than the volume of the paramagnetic phase. In the presence of the short-range spin-Peierls order (in samples with x=2.88%, x= 3.2%) there are comparable volumes of paramagnetic and antiferromagnetic phases at T=T_N. The fraction of the antiferromagnetic phase increases with lowering temperature. In the absence of the spin-Peierls dimerization (at x=4.57%)the whole sample exhibits the transition into the antiferromagnetic state and there is no phase separation. The phase separation is explained by the consideration of clusters of staggered magnetization located near impurity atoms. In this model the areas occupied by coherently correlated spins expand with decreasing temperature and the percolation of the ordered area through a macroscopic distance occurs.Comment: 7pages, 10 figure

    Spin-phonon coupled modes in the incommensurate phases of doped CuGeO3_{3}

    Full text link
    The doping effect of the folded phonon mode at 98 cm1^{-1} was investigated on the Si-doped CuGeO3_3 by magneto-optical measurements in far-infrared (FIR) region under high magnetic field. The folded phonon mode at 98 cm1^{-1} appears not only in the dimerized (D) phase but also in the dimerized-anitiferromagnetic (DAF) phase on the doped CuGeO3_3. The splitting was observed in the incommensurate (IC) phase and the antiferromagnetically ordered incommensurate (IAF) phase above HCH_C. The split-off branches exhibit different field dependence from that of the pure CuGeO3_3 in the vicinity of HCH_C, and the discrepancy in the IAF phase is larger than that in the IC phase. It is caused by the interaction between the solitons and the impurities.Comment: 7 pages, 4 figures, resubmitted to Phys. Rev.

    Direct Dynamics Simulations Using Hessian-Based Predictor-Corrector Integration Algorithms

    Get PDF
    In previous research [J. Chem. Phys.111, 3800 (1999)] a Hessian-based integration algorithm was derived for performing direct dynamics simulations. In the work presented here, improvements to this algorithm are described. The algorithm has a predictor step based on a local second-order Taylor expansion of the potential in Cartesian coordinates, within a trust radius, and a fifth-order correction to this predicted trajectory. The current algorithm determines the predicted trajectory in Cartesian coordinates, instead of the instantaneous normal mode coordinates used previously, to ensure angular momentumconservation. For the previous algorithm the corrected step was evaluated in rotated Cartesian coordinates. Since the local potential expanded in Cartesian coordinates is not invariant to rotation, the constants of motion are not necessarily conserved during the corrector step. An approximate correction to this shortcoming was made by projecting translation and rotation out of the rotated coordinates. For the current algorithm unrotated Cartesian coordinates are used for the corrected step to assure the constants of motion are conserved. An algorithm is proposed for updating the trust radius to enhance the accuracy and efficiency of the numerical integration. This modified Hessian-based integration algorithm, with its new components, has been implemented into the VENUS/NWChem software package and compared with the velocity-Verlet algorithm for the H2CO→H2+CO, O3+C3H6, and F−+CH3OOH chemical reactions

    Elementary excitations, exchange interaction and spin-Peierls transition in CuGeO3_3

    Get PDF
    The microscopic description of the spin-Peierls transition in pure and doped CuGeO_3 is developed taking into account realistic details of crystal structure. It it shown that the presence of side-groups (here Ge) strongly influences superexchange along Cu-O-Cu path, making it antiferromagnetic. Nearest-neighbour and next-nearest neighbour exchange constants JnnJ_{nn} and JnnnJ_{nnn} are calculated. Si doping effectively segments the CuO_2-chains leading to Jnn(Si)0J_{nn}(Si)\simeq0 or even slightly ferromagnetic. Strong sensitivity of the exchange constants to Cu-O-Cu and (Cu-O-Cu)-Ge angles may be responsible for the spin-Peierls transition itself (``bond-bending mechanism'' of the transition). The nature of excitations in the isolated and coupled spin-Peierls chains is studied and it is shown that topological excitations (solitons) play crucial role. Such solitons appear in particular in doped systems (Cu_{1-x}Zn_xGeO_3, CuGe_{1-x}Si_xO_3) which can explain the TSP(x)T_{SP}(x) phase diagram.Comment: 7 pages, revtex, 7 Postscript figure

    Mean-field theory of the spin-Peierls systems: Application to CuGeO3

    Full text link
    A mean-field theory of the spin Peierls systems based on the two dimensional dimerized Heisenberg model is proposed by introducing an alternating bond order parameter. Improvements with respect to previous mean-field results are found in the one-dimensional limit for the ground state and the gap energies. In two dimensions, the analysis of the competition between antiferromagnetic long range order and the spin-Peierls ordering is given as a function of the coupling constants. We show that the lowest energy gap to be observed does not have a singlet-triplet character in agreement with the low temperature thermodynamic properties of CuGeO3.Comment: 3 Revtex pages. Submitted to Rapid Comm. Figures available upon reques

    Diluted antiferromagnet in a ferromagnetic enviroment

    Full text link
    The question of robustness of a network under random ``attacks'' is treated in the framework of critical phenomena. The persistence of spontaneous magnetization of a ferromagnetic system to the random inclusion of antiferromagnetic interactions is investigated. After examing the static properties of the quenched version (in respect to the random antiferromagnetic interactions) of the model, the persistence of the magnetization is analysed also in the annealed approximation, and the difference in the results are discussed
    corecore