6 research outputs found

    Development of LGAD sensors with a thin entrance window for soft X-ray detection

    Full text link
    We show the developments carried out to improve the silicon sensor technology for the detection of soft X-rays with hybrid X-ray detectors. An optimization of the entrance window technology is required to improve the quantum efficiency. The LGAD technology can be used to amplify the signal generated by the X-rays and to increase the signal-to-noise ratio, making single photon resolution in the soft X-ray energy range possible. In this paper, we report first results obtained from an LGAD sensor production with an optimized thin entrance window. Single photon detection of soft X-rays down to 452~eV has been demonstrated from measurements, with a signal-to-noise ratio better than 20.Comment: 10 pages, 6 figure

    Characterization of iLGADs using soft X-rays

    Full text link
    Experiments at synchrotron radiation sources and X-ray Free-Electron Lasers in the soft X-ray energy range (250250eV--22keV) stand to benefit from the adaptation of the hybrid silicon detector technology for low energy photons. Inverse Low Gain Avalanche Diode (iLGAD) sensors provide an internal gain, enhancing the signal-to-noise ratio and allowing single photon detection below 11keV using hybrid detectors. In addition, an optimization of the entrance window of these sensors enhances their quantum efficiency (QE). In this work, the QE and the gain of a batch of different iLGAD diodes with optimized entrance windows were characterized using soft X-rays at the Surface/Interface:Microscopy beamline of the Swiss Light Source synchrotron. Above 250250eV, the QE is larger than 55%55\% for all sensor variations, while the charge collection efficiency is close to 100%100\%. The average gain depends on the gain layer design of the iLGADs and increases with photon energy. A fitting procedure is introduced to extract the multiplication factor as a function of the absorption depth of X-ray photons inside the sensors. In particular, the multiplication factors for electron- and hole-triggered avalanches are estimated, corresponding to photon absorption beyond or before the gain layer, respectively.Comment: 16 pages, 8 figure

    High-spatial resolution measurements with a GaAs:Cr sensor using the charge integrating MÖNCH detector with a pixel pitch of 25 m

    No full text
    The aim of this project is to determine the imaging capabilities of a 25 μ m pixel pitch GaAs:Cr sensor of 500 μm thickness bump-bonded to the charge integrating MÖNCH 03 readout chip (also called GaAs-MÖNCH assembly) and to assess the possibility to improve the spatial resolution by applying a position interpolation algorithm developed at PSI. Measurements were performed at the TOMCAT beamline of the Swiss Light Source (SLS) using photon beams in the energy range of 1030 keV. The imaging experiments indicate the possibilityto enhance the spatial resolution of the detector beyond its actual physical pixel pitch. We have quantied the spatial resolution of a GaAs-MÖNCH assembly by means of the modulation transfer function (MTF), achieving 10 μm at 10 keV and 12 μm at 20 keV photon energies. By applying a modied interpolation algorithm, a spatial resolutio nof 5 μm was obtained for 16 keV whe nbinning to 2 5μm virtual pixels, while with the silicon-MÖNCH assembly, we achieved a spatial resolution of 3.5 μm, which serves as gold standard. The results are promising because they open new possibilities to perform imaging measurements using the GaAs-MÖNCH assembly at photon energies above 15 keV, where silicon sensors suffer from a diminishing quantum efficienc

    Characterization of chromium compensated gaas sensors with the charge-integrating JUNGFRAU readout chip by means of a highly collimated pencil beam

    No full text
    Chromium compensated GaAs or GaAs:Cr sensors provided by the Tomsk State University (Russia) were characterized using the low noise, charge integrating readout chip JUNGFRAU with a pixel pitch of 75 × 75 µm2 regarding its application as an X-ray detector at synchrotrons sources or FELs. Sensor properties such as dark current, resistivity, noise performance, spectral resolution capability and charge transport properties were measured and compared with results from a previous batch of GaAs:Cr sensors which were produced from wafers obtained from a different supplier. The properties of the sample from the later batch of sensors from 2017 show a resistivity of 1.69 × 109 Ω/cm, which is 47% higher compared to the previous batch from 2016. Moreover, its noise performance is 14% lower with a value of (101.65 ± 0.04) e− ENC and the resolution of a monochromatic 60 keV photo peak is significantly improved by 38% to a FWHM of 4.3%. Likely, this is due to improvements in charge collection, lower noise, and more homogeneous effective pixel size. In a previous work, a hole lifetime of 1.4 ns for GaAs:Cr sensors was determined for the sensors of the 2016 sensor batch, explaining the so-called “crater effect” which describes the occurrence of negative signals in the pixels around a pixel with a photon hit due to the missing hole contribution to the overall signal causing an incomplete signal induction. In this publication, the “crater effect” is further elaborated by measuring GaAs:Cr sensors using the sensors from 2017. The hole lifetime of these sensors was 2.5 ns. A focused photon beam was used to illuminate well defined positions along the pixels in order to corroborate the findings from the previous work and to further characterize the consequences of the “crater effect” on the detector operation

    Characterization of iLGADs using soft X-rays

    No full text
    Experiments at synchrotron radiation sources and X-ray Free-Electron Lasers in the soft X-ray energy range (250 eV–2 keV) stand to benefit from the adaptation of the hybrid silicon detector technology for low energy photons. Inverse Low Gain Avalanche Diode (iLGAD) sensors provide an internal gain, enhancing the signal-to-noise ratio and allowing single photon detection below 1 keV using hybrid detectors. In addition, an optimization of the entrance window of these sensors enhances their quantum efficiency (QE). In this work, the QE and the gain of a batch of different iLGAD diodes with optimized entrance windows were characterized using soft X-rays at the Surface/Interface:Microscopy beamline of the Swiss Light Source synchrotron. Above 250 eV, the QE is larger than 55% for all sensor variations, while the charge collection efficiency is close to 100%. The average gain depends on the gain layer design of the iLGADs and increases with photon energy. A fitting procedure is introduced to extract the multiplication factor as a function of the absorption depth of X-ray photons inside the sensors. In particular, the multiplication factors for electron- and hole-triggered avalanches are estimated, corresponding to photon absorption beyond or before the gain layer, respectively

    Resolving soft X-ray photons with a high-rate hybrid pixel detector

    Get PDF
    Due to their high frame rates and dynamic range, large area coverage, and high signal-to-noise ratio, hybrid silicon pixel detectors are an established standard for photon science applications at X-ray energies between 2 keV and 20 keV. These properties also make hybrid detectors interesting for experiments with soft X-rays between 200 eV and 2 keV. In this energy range, however, standard hybrid detectors are limited by the quantum efficiency of the sensor and the noise of the readout electronics. These limitations can be overcome by utilizing inverse Low-Gain Avalanche Diode (iLGAD) sensors with an optimized X-ray entrance window. We have developed and characterized a prototype soft X-ray iLGAD sensor bonded to the charge integrating 75 µm pixel JUNGFRAU chip. Cooled to −22°C, the system multiplication factor of the signal generated by an impinging photon is ≥ 11. With this gain, the effective equivalent noise charge of the system is ≤5.5 electrons root-mean-square at a 5 µs integration time. We show that by cooling the system below −50°C, single photon resolution at 200 eV becomes feasible with a signal-to-noise ratio better than 5
    corecore