314 research outputs found

    Novel Therapeutic Strategies for Tissue Engineering of Bone and Cartilage Using Second Generation Biomimetic Scaffolds (EXPERTISSUES)

    Get PDF
    The main aim of the proposed network of excellence (Noël) is to combat and overcome fragmentation of European Research on the field of Tissue Engineering of Bone and Cartilage. The network will bring together Europe's leading academic centres and several complementary industrial players in a multi-disciplinary consortium to conduct and structure research that is able to compete in the internationally arena, namely with USA and Japan. The constitution of this network of excellence will lead to a complete restructuring and reshaping of the European research in this field. The size of the network (20 partners from 13 countries, including 9 of the EU member states), and the selection of its original members, was designed in order to join together the critical mass and all the expertises needed to be an unavoidable world reference on the topic of tissue engineering of bone and cartilage. In order to achieve that, the network also incorporates, as part of an International Advisory Board (not funded by EU), academic (but not industrial) partners of leading institutions in the USA, Canada and Singapore. These partners, leaded in most cases by researchers of EU nationality, agreed to join the network bringing in a specific expertise that will help to move European research on that particular topic. This Noël aims to provide new tissue engineering technologies for therapeutic treatments, which will ultimately have a major social impact by contributing to the challenge of providing lifelong health for our society at an affordable cost.NoE - Network of Excellence (FP6-2002-NMP-1

    Engineering advanced polymeric surfaces for smart systems in biomedicine, biology, material science and nanotecnology: A cross-disciplinary approach of Biology, Chemistry and Physics (BIOPOLYSURF)

    Get PDF
    The enormous potential of Biology in combination with Chemistry and Physics will lead to break-through advances in material science and to an abundant wealth of exploitable developments, Chemistry and Physics offer advanced tools for synthesis, characterization, theoretical understanding and manufacture of materials and devices, while Biology offer a window into the most sophisticated collection of functional nanostructures that exist. The inspiration searched in Nature will expand not only lo the use of the characteristics of the biological molecules but also to the clean, self-sustainable and efficient way that Nature produces such sophisticated molecules, The project of Biopolysurf aims at providing a platform for research and training In this multidisciplinary field. Biopolysurf is a RTN planned to facilitate the exchange of expertise and knowledge between top-notch groups coming from these three traditional disciplines as a way to achieve a privileged excellence in Nanobiotechnology and to establish a high quality training and truly multidisciplinary platform for young and experienced researches. Our main goal will be the engineering of advanced nanofunctionalized polymeric surfaces for smart systems in biomedicine, biology, material science and nanotechnology by assembling molecules and nano-objects into functional patterns. Biopolysurf is intended as an application-oriented research network. All the tools and knowledge developed within the network will be focused on marketable products. The aimed tasks are designed to be used in tissue engineering, drug (gene) delivery, nanobiotechnology, lab-on-a-chip systems and advanced smart materials and devices for agriculture, food packaging, cosmetics, etc. The interdisciplinary approach of Biopolysurf will establish a complete chain of knowledge: It ranges from innovative concepts for the design and the (bio) synthesis of novel materials to the fabrication of controlled (ordered) nanostructures via self-assembly.RTN - Marie Curie actions-Research Training Networks (FP6-2002-MOBILITY-1

    Three-Dimensional Reconstruction of Human Corneas by Tissue Engineering (CORNEA ENGINEERING)

    Get PDF
    The goal of the proposed research project is to reconstruct a human cornea in vitro, for use both in corneal grafting and as an alternative to animal models for cosmeto-pharmacotoxicity testing. The project responds to the urgent need to develop new forms of corneal replacements as alternatives to the use of donor corneas, in view of the worldwide shortage of donors, the increasing risk of transmissible diseases, the widespread use of corrective surgery, which renders corneas unsuitable for grafting, and the severe limitations of currently available synthetic polymer-based artificial corneas (keratoprostheses). The originality of the proposal lies in the use of recombinant human extra cellular matrix proteins to build a engineered-engineered scaffold to support growth of the different cell types found in the cornea, cells to be derived from human adult stem cell pools. The development of a reconstructed human cornea will represent a real breakthrough, allowing diseased or damaged corneas to be replaced by tissue-engineered human corneal equivalents that resemble in all respects their natural counterparts. The proposal also responds to impending ED legislation banning the marketing of cosmetic products that have been tested on animals, using procedures such as the Raise rabbit eye irritation test. The development of tissue-engineered corneas will provide a non-animal alternative, which will therefore alleviate animal suffering. The project will lead to a transformation of industry to meet societal needs using innovative, knowledge-based approaches integrating Nan technology and biotechnology. The project brings together 14 participants with complementary expertise from 9 different countries, including basic scientists, ophthalmologists and industrialists (three Sees). Ethical and standardisation aspects will also be included.STREP - Specific Targeted Research Project (FP6-2002-NMP-1

    Ph duyarlı polisebasik anhidrit bazlı nanokürelerin ilaç taşıyıcı sistem olarak hazırlanması

    Get PDF
    TÜBİTAK MAG15.06.2012Son yıllarda, özellikle kanser hastalığında teşhis ve tedavi amaçlı kullanılmak üzere, nano boyutta çeşitli organik ve inorganik sistemlerin geliştirilmesi büyük önem kazanmıştır ve bu konuda yoğun araştırmalar yapılmaktadır. Farmasötik açıdan bakıldığında, ideal bir ilaç taşıyıcı, küçük parçacık boyutunda ve yüksek ilaç yüklenme kapasitesinde olmalı, kanda uzun süre dolaşabilme özelliği göstermeli, biyobozunur olmalı ve bozunduğu kimyasallar olumsuz yan etki göstermeden vücut tarafından kolayca emilebilmelidir. Polisebasik anhidritler, iyi biyouyumluluk, kontrollu ve yüzeyden bozunma özelliği ve düşük maliyet gibi tercih edilen özellikleri nedeni ile ilaç taşıyıcı sistemlerin yapımında ümit veren polimerlerdir. İlaç taşıyıcı sistemler konusunda yapılan son gelişmeleri göz önüne alırsak, özgün ilaç taşıyıcı yaklaşımları, nano boyuttaki taşıyıcıların kanser hücrelerine hedeflenmesini ve sadece o bölgede salım yaparak etkin olmasını sağlayacak tasarımların geliştirilmesini yönündedir. Bu nedenle, etkin tümör-hedefli terapi için, taşıyıcının kimyasal yapısının yanı sıra, tümör tespit edebilme, sıcaklık veya pH duyarlılığı gibi kriterler de önem taşımaktadır. Bu çalışmanın amacı, kanser ilaç taşıyıcısı olarak polisebasik anhidrit (PSA) nanokürelerin tasarlanması ve sentezlenmesi yanı sıra akıllı ve pH duyarlı bir nano ilaç taşıyıcı sistem elde etmek amacıyla ilaç yüklü matrisin pH duyarlı bir molekül ile kaplanmasıdır. Polihistidin, pH duyarlı molekül olarak seçilmiş ve hazırlanan PSA nanoküreler polihistidin ile kaplanmıştır. PSA nano taşıyıcılara Doksorubisin kanser ilacı yüklenmiş, nano taşıyıcılar polihistidin ile kaplanarak pH duyarlı yapılmış ve bu sistemlerden ilaç salım kinetiği, asidik, nötr ve bazik olarak hazırlanan üç farklı pH tampon çözelti ortamında incelenmiştir. Nano parçacıkların fiziksel ve kimyasal özellikleri, Fourier dönüşümlü kızılötesi spektroskopisi (FTIR), dinamik ışık saçılım spektrometresi (DLS), ultraviyole ve görünür ışık absorpsiyon spektroskopisi (UV-VIS), parçacık boyut ölçücü (PA) ve taramalı elektron mikroskobu (SEM) ile karakterize edilmiştir.In the recent years, development of various organic and inorganic nano sized systems to be used especially in cancer for diagnosis and therapy has gained great interest, and intense research is carried out on this subject. In pharmaceutical aspect, an ideal drug carrier should have high loading capacity with small particle size, demonstrate prolonged circulation in the blood, should be biodegradable and the metabolite chemicals should be bio-absorbable by the body without causing any negative side effect. Polysebacic anhydrides are promising polymers in the formation of drug delivery systems because of their preferable properties such as good biocompatibility, controlled surface erosion and low cost. Regarding as the recent trends for drug delivery system design, the novel approaches for drug carriers are mainly based on development of nano size drug carriers which are targeted to cancer cells and release the drug only in that area. Thus, for an effective tumour-targeted delivery, further criteria such as detection of tumour and sensitivity to temperature or pH, besides its chemical structure gains importance. In this study, the aim is to design and synthesize polysebacic anhydride (PSA) nano spheres as anti cancer drug carrier, and to coat the drug-loaded matrix with a pH sensitive molecule in order to get an intelligent and pH sensitive nano drug carrier system. Polyhistidine was choosen as pH sensitive molecule and the prepared PSA nanospheres were coated with polyhistidine. PSA nano carriers were loaded with Doxorubicin anti-cancer drug, nano spheres were coated with polyhistidine in order to introduce pH sensitivity, and the drug release kinetics from these systems were examined in three different buffer media prepared as acidic, neutral and basic media. The physical and chemical properties of the nano particles were characterized by Fourier transform infrared spectroscopy (FTIR), dynamic light scattering (DLS), ultraviolet and visible absorption spectroscopy (UV-VIS), particle sizer (PA), and scanning electron microscopy (SEM)

    Biyouyumlu kemik çimentosu formülasyonlarının geliştirilmesi

    Get PDF
    TÜBİTAK MAG31.12.2008Kemik çimentoları ortopedik cerrahide ve diş hekimliğinde kullanılmakta olup günümüzde ticari olarak en yaygın kullanılanlar polimetilmetakrilat (PMMA) temellidir. Ortopedik cerrahide kemik çimentosu, kemikteki hasarlı bölgelerin onarımında dolgu maddesi olarak; metal protez kullanımında kemik ile metal arasında mekanik bağlantıyı oluşturarak protezin stabilize edilmesini ve bu sayede kemik üzerindeki vücut yükünün homojen dağıtılmasını sağlamak amacıyla kullanılır. Akrilik kemik çimentoları iki kısımdan oluşmaktadır. Katı kısım PMMA partikülleri ve polimer başlatıcısı, sıvı kısım metilmetakrilat (MMA) monomeri ve polimerizasyon hızlandırıcısı içerir. PMMA kullanımında karşılaşılan en önemli problemler; çimentonun zaman içinde gevşemesi, mekanik dayanım yetersizliği dolayısıyla kırılması, ve sertleşme sırasında ekzotermik polimerizasyon sonucu yükselen sıcaklığın (~80°C) çevre dokuya zarar vermesidir. Kemik çimentosunun uzun süre kullanımı sırasında kırılmaması, kemik ile protez arasında oluşturduğu bağlantının gevşememesi ve polimerizasyon sırasında ortaya çıkan ısının dokularda hasara neden olmaması gerekir. Kemik çimentolarında tüm bu özellikleri etkileyen bazı parametreler vardır. Polimer/monomer oranı, PMMA partiküllerin boyutları, eklenen başlatıcı ve hızlandırıcının diğer maddelere oranları, formülasyona eklenen diğer katkı maddeleri bu parametrelerden bazılarıdır. Bu proje kapsamında; değişik kompozisyonlarda akrilik kemik çimentoları hazırlanmış, kompozisyona eklenen partiküllerin yüzeyleri oksijen plazma ile değiştirilerek ve yapıya biyouyumluluğu artırmak amacıyla hidroksiapatit (HA) ve/veya kitosan eklenerek ısıl, mekanik dayanım ve biyouyumluluk özellikleri iyileştirilmeye ve ticari olarak üretime gidebilecek ürün yapımına çalışılmıştır. Polimerizasyon sırasında oluşan ısı, bazı endotermik maddeler eklenerek ısının yayılması önlenmeye çalışılmıştır. Hazırlanan kompozisyonlarda, ısıl ve mekanik değişimler incelenip optimize edildikten sonra in vitro biyouyumluluk testleri xi yapılmıştır. Çalışmalarımızda, ticari olarak bulunan ve kullanılmakta olan CMW1 kemik çimentosu kontrol grubu olarak seçilmiştir. Laboratuvarımızda yapılan deneylerle CMW1 kemik çimentosunun kür sıcaklığı oldukça yüksek olarak 96°C, basma ve çekme dayanımı sırasıyla 100 MPa ve 20 MPa olarak bulunmuştur. Laboratuarımızda hazırlanan formülasyonlarda hidroksiapatit eklenip 50 W 5 dakika oksijen plazma uygulanan kemik çimentosunun basma dayanımı ve çekme dayanımı sırasıyla 94 MPa ve 27 MPa, kür sıcaklığı ise 76°C olarak bulunmuştur. Bu kompozisyona mekanik dayanımı arttırmak için kitosan ve zeolit eklendiğinde ise basma dayanımı 98 MPa’a kadar çıkmıştır. Sonuç olarak, laboratuvarlarımızda mekanik özellikleri ticari ürün olan CMW1’e benzer olan ve ısıl özellikleri CMW1’den çok daha iyi olan yeni kemik çimentosu formülasyonları hazırlanmıştır. Hücre kültür deneyleri ve in vivo uygulamalar da yeni sentezlenen kemik çimentolarının biyolojik ortam ile uyumlu olduğunu göstermiştir. Kitosan içeren kemik çimentoları farelere uygulanmış ve uygulamadan dört hafta sonra defektli kemik bölgesinde yeni osteoid yapımı gözlenmiştir.Bone cements are used in orthopaedic surgery and densitry, and the commonly used commercial ones are prepared from poly (methyl methacrylate) (PMMA). In orthopaedic surgery bone cements are used as filling agents for the treatment of damaged tissues and they are used to stabilize the prosthesis by providing the mechanical interlock between bone and metal during the use of metal prothesis and to provide the homogeneous distribution of applied load. Acrylic bone cements are two-component systems. Powder part consists of poly (methyl metacrylate) particles and polymer initiator; liquid part consists of methyl methacrylate (MMA) monomer and polymerization accelerator. In the use of PMMA the most serious problems are the fracture of the bone cement due to insufficient mechanical strength and the local temperature increase (~80°C) due to highly exothermic polymerization which causes tissue necrosis. It is necessary to avoid the fracture of bone cements during long term usage, aseptic loosening of the interlock between bone and prosthesis and tissue necrosis caused by the the local temperature increase due to highly exothermic polymerization. Some parameters affect the properties of bone cements. Polymer/monomer ratio, particle size of PMMA particules, the ratio of initiator and accelerator with respect to other components and other additives are some examples of these parameters. In this project; different acrylic bone cement formulations were prepared, surface of the particules was modified with oxygen plasma, hydroxyapatite (HA) and/or chitosan were added to improve biocompatibility, thermal and mechanical properties and studies were carried out in order to produce a new bone cement of commercial quality. Heat absorbers were added to give endothermic reactions to avoid the diffusion of heat produced during exothermic polymerization. After the examination of thermal and mechanical properties of xiii prepared cements the optimum composition was chosen and in vitro biocompatibility tests were performed. CMW1, which is widely used as commercial cement, was selected as the control. The experiments performed in our laboratory, the curing temperature of CMW1 was found quite high as 96°C and compressive and tensile strength were found as 100 MPa and 20 MPa, respectively. Compressive strength, tensile strength and curing temperature of formulations prepared by the addition of hydroxyapatite and application of 50 W 5 minutes oxygen plasma were found as 94 MPa, 27 MPa and 76°C, respectively. When chitosan and zeolit were added to increase mechanical strength, compressive strength was increased up to 98 MPa. As a conclusion, when compared to commercial CMW1, bone cement formulations having similar mechanical strength but better thermal properties were prepared. Cell culture and in vivo applications also demonstrated that the newly synthesized bone cements are biocompatible with biological media. Bone cements were applied to rats and new osteoid formation was observed after four weeks of application in the defected area

    A Cell Culture Chip with Transparent, Micropillar-Decorated Bottom for Live Cell Imaging and Screening of Breast Cancer Cells

    Get PDF
    In the recent years, microfabrication technologies have been widely used in cell biology, tissue engineering, and regenerative medicine studies. Today, the implementation of microfabricated devices in cancer research is frequent and advantageous because it enables the study of cancer cells in controlled microenvironments provided by the microchips. Breast cancer is one of the most common cancers in women, and the way breast cancer cells interact with their physical microenvironment is still under investigation. In this study, we developed a transparent cell culture chip (Ch-Pattern) with a micropillar-decorated bottom that makes live imaging and monitoring of the metabolic, proliferative, apoptotic, and morphological behavior of breast cancer cells possible. The reason for the use of micropatterned surfaces is because cancer cells deform and lose their shape and acto-myosin integrity on micropatterned substrates, and this allows the quantification of the changes in morphology and through that identification of the cancerous cells. In the last decade, cancer cells were studied on micropatterned substrates of varying sizes and with a variety of biomaterials. These studies were conducted using conventional cell culture plates carrying patterned films. In the present study, cell culture protocols were conducted in the clear-bottom micropatterned chip. This approach adds significantly to the current knowledge and applications by enabling low-volume and high-throughput processing of the cell behavior, especially the cell-micropattern interactions. In this study, two different breast cancer cell lines, MDA-MB-231 and MCF-7, were used. MDA-MB-231 cells are invasive and metastatic, while MCF-7 cells are not metastatic. The nuclei of these two cell types deformed to distinctly different levels on the micropatterns, had different metabolic and proliferation rates, and their cell cycles were affected. The Ch-Pattern chips developed in this study proved to have significant advantages when used in the biological analysis of live cells and highly beneficial in the study of screening breast cancer cell-substrate interactions in vitro

    Suprofen İçeren Lipozomlardan Işık Kontrollü İlaç Salımı

    No full text
    Projenin amacı, ışığa duyarlı ve biyoaktif molekül (anti- kanser ilacı) taşıyan lipozomlar oluşturmak ve bu lipozomları hedef bölgelere yönlendirmektir. Birinci amaç için, lipozomlar Suprofenin ve kolesterolün değişik konsantrasyonları ile üretilecek ve en uygun membran kompozisyonu belirlenecektir. Lipozomlar fosfatidilkolin, kolesterol ve Suprofen ile oluşturulacaktır. Zarın yapısındaki Suprofen UV ye tutulduğunda yapısal değişikliğe uğrayacak, lipozomun yapısı bozulacak ve içerik ortama dağıtılacaktır. Zarında Suprofen olan lipozomlara hazırlanma sırasında biyoaktif molekül doldurulacaktır. Projenin ilk aşamalarında biyoaktif molekül yerine floresan boya kullanılacaktır. Bu sayede ilaç salımını florometrik olarak kontrol etmek ve lipozomları görüntülemek de mümkün olacaktır. Floresan molekül olarak calcein kullanılacaktır. Çalışmanın ikinci bölümü için, hücre kültürü çalışmaları yapılacaktır. İçine anti-kanser ilacı yüklenmiş lipozomlar kanser hücrelerine uygulanacaktır. UV ile aktive edilen lipozomlardan ilaç salımı ve bunun hücreler üzerine etkisi araştırılacaktır
    corecore