54 research outputs found

    Modern Instrumental Limits of Identification of Ignitable Liquids in Forensic Fire Debris Analysis

    Get PDF
    Forensic fire debris analysis is an important part of fire investigation, and gas chromatography– mass spectrometry (GC-MS) is the accepted standard for detection of ignitable liquids in fire debris. While GC-MS is the dominant technique, comprehensive two-dimensional gas chromatography–mass spectrometry (GC GC-MS) is gaining popularity. Despite the broad use of these techniques, their sensitivities are poorly characterized for petroleum-based ignitable liquids. Accordingly, we explored the limit of identification (LOI) using the protocols currently applied in accredited forensic labs for two 75% evaporated gasolines and a 25% evaporated diesel as both neat samples and in the presence of interfering pyrolysate typical of fire debris. GC-MSD (mass selective detector (MS)), GC-TOF (time-of-flight (MS)), and GC GC-TOF were evaluated under matched conditions to determine the volume of ignitable liquid required on-column for correct identification by three experienced forensic examiners performing chromatographic interpretation in accordance with ASTM E1618-14. GC-MSD provided LOIs of ~0.6 pL on-column for both neat gasolines, and ~12.5 pL on-column for neat diesel. In the presence of pyrolysate, the gasoline LOIs increased to ~6.2 pL on-column, while diesel could not be correctly identified at the concentrations tested. For the neat dilutions, GC-TOF generally provided 2 better sensitivity over GC-MSD, while GC GC-TOF generally resulted in 10 better sensitivity over GC-MSD. In the presence of pyrolysate, GC-TOF was generally equivalent to GC-MSD, while GC GC-TOF continued to show 10 greater sensitivity relative to GC-MSD. Our findings demonstrate the superior sensitivity of GC GC-TOF and provide an important approach for interlaboratory benchmarking of modern instrumental performance in fire debris analysis

    Indole-3-acetic acid is produced by Emiliania huxleyi coccolith-bearing cells and triggers a physiological response in bald cells

    Get PDF
    © 2016 Labeeuw, Khey, Bramucci, Atwal, de la Mata, Harynuk and Case. Indole-3-acetic acid (IAA) is an auxin produced by terrestrial plants which influences development through a variety of cellular mechanisms, such as altering cell orientation, organ development, fertility, and cell elongation. IAA is also produced by bacterial pathogens and symbionts of plants and algae, allowing them to manipulate growth and development of their host. They do so by either producing excess exogenous IAA or hijacking the IAA biosynthesis pathway of their host. The endogenous production of IAA by algae remains contentious. Using Emiliania huxleyi, a globally abundant marine haptophyte, we investigated the presence and potential role of IAA in algae. Homologs of genes involved in several tryptophan-dependent IAA biosynthesis pathways were identified in E. huxleyi. This suggests that this haptophyte can synthesize IAA using various precursors derived from tryptophan. Addition of L-tryptophan to E. huxleyi stimulated IAA production, which could be detected using Salkowski's reagent and GC × GC-TOFMS in the C cell type (coccolith bearing), but not in the N cell type (bald). Various concentrations of IAA were exogenously added to these two cell types to identify a physiological response in E. huxleyi. The N cell type, which did not produce IAA, was more sensitive to it, showing an increased variation in cell size, membrane permeability, and a corresponding increase in the photosynthetic potential quantum yield of Photosystem II (PSII). A roseobacter (bacteria commonly associated with E. huxleyi) Ruegeria sp. R11, previously shown to produce IAA, was co-cultured with E. huxleyi C and N cells. IAA could not be detected from these co-cultures, and even when stimulated by addition of L-tryptophan, they produced less IAA than axenic C type culture similarly induced. This suggests that IAA plays a novel role signaling between different E. huxleyi cell types, rather than between a bacteria and its algal host

    COMPARING GC×GC-TOFMS-BASED METABOLOMIC PROFILING AND WOOD ANATOMY FOR FORENSIC IDENTIFICATION OF FIVE MELIACEAE (MAHOGANY) SPECIES

    Get PDF
    Illegal logging and associated trade have increased worldwide. Such environmental crimes represent a major threat to forest ecosystems and society, causing distortions in market prices, economic instability, ecological deterioration, and poverty. To prevent illegal imports of forest products, there is a need to develop wood identification methods for identifying tree species regulated by the Convention on International Trade in Species of Wild Fauna andFlora in Trade (CITES) and other look-alike species. In this exploratory study, we applied metabolomic profiling of five species (Swietenia mahagoni, Swietenia macrophylla, Cedrela odorata, Khaya ivorensis, and Toona ciliata) using two-dimensional gas chromatog- raphy combined with time-of-flight mass spectrometry (GC3GC-TOFMS). We also performed qualitative, quantitative (based on the measurement of vessel area, tangential vessel lumina diameter,vessel element length, ray height, and ray width), and machine-vision aided (XyloTron) wood anatomy on a subsample of wood specimens to explore thepotential and limits of each approach. Fifty dried xylaria wood specimens were ground, extracted with methanol, and subsequently analyzed by GC3GC-TOFMS. In this study, the four genera could easily be identified using qualitative wood anatomy and chemical profiling. At the spe- cies level, Swietenia macrophylla and Swietenia mahagoni specimens were found to share many major metabolites and could only be differentiated after feature selection guided by cluster resolution (FS-CR) and visualization using Principal Component Analysis (PCA). Expectedly, specimens from the two Swiete- nia spp. could not be distinguished based on qualitative wood anatomy. However, significant differences in quantitative anatomical features were obtained for these two species. Excluding T. ciliata that was not included in the reference database of end grain images at the time of testing (2021), the XyloTron could successfully identify the majority of the specimens to the right genus and 50% of the specimens to the right species. The machine-vision tool was particularly successful at identifying Cedrela odorata samples, where all samples were correctly identified. Despite the limited number of specimens available for thisstudy, our preliminary results indicate that GC3GC-TOFMS-based metabolomic profiles could be used as comple- mentary method to differentiate CITES-regulated wood specimens at the genus and species levels.

    Fast GCxGC with short primary columns

    No full text
    A novel approach to comprehensive two-dimensional gas chromatography (GC×GC) separations is presented, which operates in a new region of the "GC×GC optimization pyramid". The technique relies on the use of short primary columns to decrease elution temperatures (Te) of analytes from the primary column, with a Te reduction of up to 50 °C illustrated. This in turn has implications that will expand the areas where GC×GC can be used, as decreased elution temperatures will allow GC×GC to be applied to mixtures of less volatile compounds or permit the use of less thermally stable stationary phases in the column ensemble. As well, it will allow GC×GC to be applied to thermally labile compounds through a reduction in elution temperature. With short primary columns, resolution and efficiency in the first dimension is sacrificed, but speed is gained; however, the second column in GC×GC provides additional resolution and separation of compounds of differing chemical properties. Thus, it is possible to recover some of the analytical separation power of the system to provide resolution of target analytes from sample impurities. As an example, a case study using short primary columns for the separation of natural pyrethrins, which degrade above 200 °C, is described. Even with the sacrifices of overall separation power that are made, there is still sufficient resolution available to separate the six natural pyrethrins from each other and the complex chrysanthemum extract matrix. The use of cold-on-column injection, a short primary column, and a high carrier gas flow rate allow the pyrethrins to be eluted below 200 °C, with separation in 17 min and complete resolution from sample matrix

    Modulation-induced error in comprehensive two-dimensional gas chromatographic separations

    No full text
    There is a fundamental difference between data collected in comprehensive two-dimensional gas chromatographic (GC × GC) separations and data collected by one-dimensional GC techniques (or heart-cut GC techniques). This difference can be ascribed to the fact that GC × GC generates multiple sub-peaks for each analyte, as opposed to other GC techniques that generate only a single chromatographic peak for each analyte. In order to calculate the total signal for the analyte, the most commonly used approach is to consider the cumulative area that results from the integration of each sub-peak. Alternately, the data may be considered using higher order techniques such as the generalized rank annihilation method (GRAM). Regardless of the approach, the potential errors are expected to be greater for trace analytes where the sub-peaks are close to the limit of detection (LOD). This error is also expected to be compounded with phase-induced error, a phenomenon foreign to the measurement of single peaks. Here these sources of error are investigated for the first time using both the traditional integration-based approach and GRAM analysis. The use of simulated data permits the sources of error to be controlled and independently evaluated in a manner not possible with real data. The results of this study show that the error introduced by the modulation process is at worst 1% for analyte signals with a base peak height of 10 × LOD and either approach to quantitation is used. Errors due to phase shifting are shown to be of greater concern, especially for trace analytes with only one or two visible sub-peaks. In this case, the error could be as great as 6.4% for symmetrical peaks when a conventional integration approach is used. This is contrasted by GRAM which provides a much more precise result, at worst 1.8% and 0.6% when the modulation ratio (MR) is 1.5 or 3.0, respectively for symmetrical peaks. The data show that for analyses demanding high precision, a MR of 3 should be targeted as a minimum, especially if multivariate techniques are to be used so as to maintain data density in the primary dimension. For rapid screening techniques where precision is not as critical lower MR values can be tolerated. When integration is used, if there are 4–5 visible sub-peaks included for a symmetrical peak at MR = 3.0, the data will be reasonably free from phase-shift-induced errors or a negative bias. At MR = 1.5, at least 3 sub-peaks must be included for a symmetrical peak. The proposed guidelines should be equally relevant to LC × LC and other similar techniques

    Evaluation of new stationary phases for the separation of fatty acid methyl esters

    No full text
    In the analysis of fatty acids, one of the most commonly used tools is a GC separation of the fatty acid methyl esters (FAME). Many researchers perform this separation using a non-polar phase such the ubiquitous 5% pkenyl / 95% methyl capillary columns found in most every chromatography laboratory. Numerous laboratories have also turned recently to polar phases such as 70% cyanopropyl columns, as this type of chemistry provides increased selectivity for unsaturated compounds, and thus improved separation of cis/trans and omega(3)/omega(6) FAME isomers. Here, a series of columns nominally having 60, 70, 80, and 90% bis-cyanopropyl content have been tested for the separation of FAME isomers. Trends in retention and the influence of increasing phase polarity on effective and fractional chain lengths are highlighted to provide the FAME chromatographer with insight into which of these novel stationary phases might be best suited to their particular application. In addition, the elution temperatures (T-e) of the FAME and linear alkane standards are presented, as this information will be of value to comprehensive two-dimensional multidimensional GC (GC x GC) users who wish to use these columns in the primary dimension separation

    Projection of multidimensional GC data into alternative dimensions-exploiting sample dimensionality and structured retention patterns

    No full text
    Comprehensive multidimensional gas chromatography (GCxGC) is a powerful separation technique. One of the features of this technique is that it offers separations with more apparent structure than that offered by conventional one-dimensional GC (1-D GC). While some previous studies have alluded to this structure, and used structured retention patterns for some simple classifications, the topic of structured retention in GCxGC has not been studied in any great detail. Using the separation of fatty acid methyl esters (FAME) on both nonpolar/polar and polar/nonpolar column sets, the interaction between the separation dimensions and the sample dimensions is explored here. The GCxGC separation of a series of compounds is presented as a projection of the sample from sample space, a p-dimensional space with dimensions defined by the dimensionality of the sample, into separation space: for GCxGC, a two-dimensional plane passing through the sample space in an orientation defined by the separation conditions. Using this conceptual model and some a priori knowledge of the sample, it is shown how the image of the sample in the separation space can be used to construct an image of the sample in alternate dimensions, such as second dimension retention factor ((2)k) vs. chain length in the case of FAME. These projections into alternate dimensions should facilitate the interpretation of the complex patterns found within the GCxGC chromatogram for the identification and classification of compounds
    corecore