1,707 research outputs found
Demographic assessment of the blue crab (Callinectes sapidus) in Chesapeake Bay using extractable lipofuscins as age markers
The blue crab (Callinectes sapidus) plays an important economic and ecological role in estuaries and coastal habitats from the Gulf of Mexico to the east coast of North America, but demographic assessments are limited by length-based methods. We applied an alternative aging method using biochemical measures of metabolic byproducts (lipofuscins) sequestered in the neural tissue of eyestalks to examine population age structure. From Chesapeake Bay, subsamples of animals collected from the 1998–99 (n=769) and 1999–2000 (n=367) winter dredge surveys were collected and lipofuscin was measured. Modal analysis of the lipofuscin index provided separation into three modes, whereas carapace-width data collected among the same individuals showed two broad modes. Lipofuscin modal analysis indicated that most adults (carapace width >120 mm) were <2 years old. The results indicate that use of extractable lipofuscin can provide a more accurate and better resolved estimation of demographic structure of blue crab populations in the field than size alone
Use of Extractable Lipofuscin for Age Determination of Blue Crab Callinectes Sapidus
The blue crab Callinectes sapidus is an economically and ecologically important species in many temperate estuaries, yet stock assessments have been limited to length-based methods for demographic analyses. We evaluated the potential of age pigments (lipofuscins) sequestered in neural tissue of eye-stalks and brains to estimate the age of blue crabs collected from Chesapeake Bay and Chincoteague Bay. The rate of lipofuscin accumulation was determined using crabs of known age reared in the laboratory. Age pigments were extracted from neural tissues (eye-stalk or brain), quantified, and normalized to protein content to allow comparisons across tissue types and crab sizes. Field-collected blue crabs (35 to 185 mm carapace width) contained highly variable levels of age pigments (coefficient of variation = 58 %). Lipofuscin level was significantly related to carapace width, but not significantly different between gender or sampling location. In juveniles (40 to 70 mm carapace width) reared for 6 mo, the age pigments showed no significant change during the rapid summer growth period, but significantly increased during fall (after 3 mo). Lipofuscin contents in known-age reared crabs were positively related to chronological age. Modal analysis of lipofuscin for field-collected adult males provided separation of multiple modes, whereas carapace width showed only a single broad mode. These results confirm the potential use of lipofuscin for age estimation of blue crabs
The Use of Extractable Lipofuscin for Age Determination of Crustaceans: Reply to Sheehy (2008)
The heterogeneous mixture of metabolic by-products termed lipofuscin (LF) or age pigments has long been known to accumulate in post mitotic cells with increasing age. In crustaceans several approaches have been developed over the years to track LF accumulation and provide a proxy for chronological age. Histological approaches have been traditionally used for LF determination of crustaceans (e.g. Sheehy et al. 1994, Mar Biol 121:237-245), but over the last decade extraction approaches for neural tissues have been introduced (Ju et al. 1999, Mar Ecol Prog Ser 185:171-179) and tested (Ju et al. 2001, Mar Ecol Prog Ser 224:197-205; 2003, Fish Bull 101:312-320) for the crab Callinectes sapidis. In developing the extraction approach we have followed the most rigorous age validation steps available to us and carefully reported accuracy, precision, and bias estimates. In the present paper, we welcome the opportunity to respond to the individual concerns of Sheehy (2008, Mar Ecol Prog Ser 353:303-306) that (1) extractable LF remains unidentified, (2) extracted LF is not correlated with in situ LF, and (3) protein normalization does not produce a reliable assay. We argue that the fundamental issue of an incomplete characterization of LF as an ageing structure pervades most, if not all invertebrate fishery applications. We show positive correlation between the 2 methods, despite the lack of each to fully characterize the structurally complex products generated and sequestered in neural tissues. New information is presented on the ability of extractable LF to follow age in small macrozooplankton, suggesting the broad applicability of the extraction aging approach to small crustaceans. Dependent upon species and availability of known age animals for calibration, both histological and extraction approaches can be an effective method for age determination in crustaceans if they meet the requirements of validation, precision and bias estimations that typify rigorous age determinations in fisheries science
Growth Rate Variability and Lipofuscin Accumulation Rates in the Blue Crab Callinectes Sapidus
To better understand growth and age-pigment (lipofuscin) accumulation rates of the blue crab Callinectes sapidus under natural conditions, juveniles (33 to 94 mm carapace width) were reared in outdoor ponds for over 1 yr. Growth rates, measured by carapace width, during summer and fall exceeded all those reported in the literature; the initial carapace width of 59 ± 14 mm (mean ± SD) increased to 164 ± 15 mm within a 3 mo period. No growth occurred during winter months (November to April) at low water temperatures. Growth rates of crabs in ponds were substantially higher (von Bertalanffy growth parameter K = 1.09) than those of crabs held in laboratory environments, and than rate estimates for natural populations of mid-Atlantic blue crabs. Model comparisons indicated that seasonalized von Bertalanffy growth models (r2 \u3e 0.9) provide a better fit than the non-seasonalized model (r2= 0.74) for pond-reared crabs and, by implication, are more appropriate for field populations. Despite growth rates that varied strongly with season, lipofuscin (normalized to protein concentration) accumulation rate was nearly constant throughout the year. Although the lipofuscin level in pond-reared crabs was significantly correlated with size (carapace width), it was more closely correlated with chronological age. Lipofuscin accumulation rates were also similar to those observed for laboratory-reared crabs, despite very large differences in growth rates and temperature regimes. The constancy of normalized-lipofuscin accumulation rates of blue crabs across seasons and environmental conditions suggests that lipofuscin concentration can be a more robust indicator of age than carapace width alone
The Role of Lipids During Embryonic Development of the Euphausiids Euphausia Pacifica and Thysanoessa Spinifera
To understand the role of lipids during early embryogenesis, major lipid classes together with individual fatty acid and sterol composition were determined in embryos from multiple developmental stages of the euphausiids Euphausia pacifica and Thysanoessa spinifera. Average lipid content in embryos of E. pacifica and T. spiniferafrom the earliest stage (multicell) were 4.45 and 3.69 µg embryo-1,respectively. During development, the lipid content decreased at similar rates in the embryos of both species. In contrast to many crustacean eggs, phospholipids were the dominant lipid class in all embryonic stages, with decreasing concentrations seen during development. Individual fatty acids and sterols showed selective utilization during early developmental stages. The dominant fatty acids were 16:0 and 16:1ω7 and 20:5ω3, with most polyunsaturated fatty acids preferentially metabolized throughout early stages. An exception was 22:6ω3, which remained near constant through all stages. Cholesterol was the dominant sterol (\u3e82% of total sterols) in embryos, with only minor changes during development. The appearance of algal sterols and fatty alcohols, including phytol, in T. spinifera embryos suggests that considerable amounts of algal lipids are directly allocated to eggs during vitellogenesis. Despite the substantial changes in lipid amount and composition during embryo development, the presence of phospholipids as the dominate lipid store acts to moderate changes in egg-sinking rate for both species until the late (early and late limb-bud) stages of development
Risk Adjustment In Neurocritical care (RAIN)--prospective validation of risk prediction models for adult patients with acute traumatic brain injury to use to evaluate the optimum location and comparative costs of neurocritical care: a cohort study.
OBJECTIVES: To validate risk prediction models for acute traumatic brain injury (TBI) and to use the best model to evaluate the optimum location and comparative costs of neurocritical care in the NHS. DESIGN: Cohort study. SETTING: Sixty-seven adult critical care units. PARTICIPANTS: Adult patients admitted to critical care following actual/suspected TBI with a Glasgow Coma Scale (GCS) score of < 15. INTERVENTIONS: Critical care delivered in a dedicated neurocritical care unit, a combined neuro/general critical care unit within a neuroscience centre or a general critical care unit outside a neuroscience centre. MAIN OUTCOME MEASURES: Mortality, Glasgow Outcome Scale - Extended (GOSE) questionnaire and European Quality of Life-5 Dimensions, 3-level version (EQ-5D-3L) questionnaire at 6 months following TBI. RESULTS: The final Risk Adjustment In Neurocritical care (RAIN) study data set contained 3626 admissions. After exclusions, 3210 patients with acute TBI were included. Overall follow-up rate at 6 months was 81%. Of 3210 patients, 101 (3.1%) had no GCS score recorded and 134 (4.2%) had a last pre-sedation GCS score of 15, resulting in 2975 patients for analysis. The most common causes of TBI were road traffic accidents (RTAs) (33%), falls (47%) and assault (12%). Patients were predominantly young (mean age 45 years overall) and male (76% overall). Six-month mortality was 22% for RTAs, 32% for falls and 17% for assault. Of survivors at 6 months with a known GOSE category, 44% had severe disability, 30% moderate disability and 26% made a good recovery. Overall, 61% of patients with known outcome had an unfavourable outcome (death or severe disability) at 6 months. Between 35% and 70% of survivors reported problems across the five domains of the EQ-5D-3L. Of the 10 risk models selected for validation, the best discrimination overall was from the International Mission for Prognosis and Analysis of Clinical Trials in TBI Lab model (IMPACT) (c-index 0.779 for mortality, 0.713 for unfavourable outcome). The model was well calibrated for 6-month mortality but substantially underpredicted the risk of unfavourable outcome at 6 months. Baseline patient characteristics were similar between dedicated neurocritical care units and combined neuro/general critical care units. In lifetime cost-effectiveness analysis, dedicated neurocritical care units had higher mean lifetime quality-adjusted life-years (QALYs) at small additional mean costs with an incremental cost-effectiveness ratio (ICER) of £14,000 per QALY and incremental net monetary benefit (INB) of £17,000. The cost-effectiveness acceptability curve suggested that the probability that dedicated compared with combined neurocritical care units are cost-effective is around 60%. There were substantial differences in case mix between the 'early' (within 18 hours of presentation) and 'no or late' (after 24 hours) transfer groups. After adjustment, the 'early' transfer group reported higher lifetime QALYs at an additional cost with an ICER of £11,000 and INB of £17,000. CONCLUSIONS: The risk models demonstrated sufficient statistical performance to support their use in research but fell below the level required to guide individual patient decision-making. The results suggest that management in a dedicated neurocritical care unit may be cost-effective compared with a combined neuro/general critical care unit (although there is considerable statistical uncertainty) and support current recommendations that all patients with severe TBI would benefit from transfer to a neurosciences centre, regardless of the need for surgery. We recommend further research to improve risk prediction models; consider alternative approaches for handling unobserved confounding; better understand long-term outcomes and alternative pathways of care; and explore equity of access to postcritical care support for patients following acute TBI. FUNDING: The National Institute for Health Research Health Technology Assessment programme
Does Antarctic Krill Employ Body Shrinkage as an Overwintering Strategy?
To determine if Antarctic krill employ body shrinkage as one of its overwintering mechanisms in the field, Euphausia superba and Euphausia crystallorophias were collected during fall and winter in and around Marguerite Bay through US Southern Ocean GLOBEC field programs during fall and winter 2001 and 2002. The relationships between the body length and weight of both krill species were exponentially correlated with no significant differences between the two species (p\u3e0.05). The ratio between eye diameter and body length of individual krill was examined in an expectation that it could be used as an indicator of the body shrinkage as previously suggested by Shin and Nicol (2002). These ratios were significantly different between the two krill species. Especially, E. crystallorophias had bigger eyes than E. superba. In both krill species, eye diameters were highly correlated with body lengths (regression coefficients ≥ 0.70). For E. crystallorophias, no significant differences of the ratio of eye diameter/body length were detected between fall and winter. Even though the ratios for E. superba were seasonally varied, it was not clear whether body shrinkage was an actual and critical overwintering mechanism for the krill population found in this study area. These results suggest that some individuals of E. superba might experience the body shrinkage during a part of their life, but this morphological index alone (eye diameter/body length) may be insufficient to unambiguously separate the shrunk krill from the non-shrunk ones in the field-collected animals
- …