29,236 research outputs found

    Trade studies for nuclear space power systems

    Get PDF
    As human visions of space applications expand and as we probe further out into the universe, our needs for power will also expand, and missions will evolve which are enabled by nuclear power. A broad spectrum of missions which are enhanced or enabled by nuclear power sources have been defined. These include Earth orbital platforms, deep space platforms, planetary exploration, and terrestrial resource exploration. The recently proposed Space Exploration Initiative (SEI) to the Moon and Mars has more clearly defined these missions and their power requirements. Presented here are results of recent studies of radioisotope and nuclear reactor energy sources, combined with various energy conversion devices for Earth orbital applications, SEI lunar/Mars rovers, surface power, and planetary exploration

    Stable and unstable attractors in Boolean networks

    Full text link
    Boolean networks at the critical point have been a matter of debate for many years as, e.g., scaling of number of attractor with system size. Recently it was found that this number scales superpolynomially with system size, contrary to a common earlier expectation of sublinear scaling. We here point to the fact that these results are obtained using deterministic parallel update, where a large fraction of attractors in fact are an artifact of the updating scheme. This limits the significance of these results for biological systems where noise is omnipresent. We here take a fresh look at attractors in Boolean networks with the original motivation of simplified models for biological systems in mind. We test stability of attractors w.r.t. infinitesimal deviations from synchronous update and find that most attractors found under parallel update are artifacts arising from the synchronous clocking mode. The remaining fraction of attractors are stable against fluctuating response delays. For this subset of stable attractors we observe sublinear scaling of the number of attractors with system size.Comment: extended version, additional figur

    Explosive Events and the Evolution of the Photospheric Magnetic Field

    Full text link
    Transition region explosive events have long been suggested as direct signatures of magnetic reconnection in the solar atmosphere. In seeking further observational evidence to support this interpretation, we study the relation between explosive events and the evolution of the solar magnetic field as seen in line-of-sight photospheric magnetograms. We find that about 38% of events show changes of the magnetic structure in the photosphere at the location of an explosive event over a time period of 1 h. We also discuss potential ambiguities in the analysis of high sensitivity magnetograms

    The Self-Dual String and Anomalies in the M5-brane

    Full text link
    We study the anomalies of a charge Q2Q_2 self-dual string solution in the Coulomb branch of Q5Q_5 M5-branes. Cancellation of these anomalies allows us to determine the anomaly of the zero-modes on the self-dual string and their scaling with Q2Q_2 and Q5Q_5. The dimensional reduction of the five-brane anomalous couplings then lead to certain anomalous couplings for D-branes.Comment: 13 pages, Harvmac, refs adde

    General Scheme for Perfect Quantum Network Coding with Free Classical Communication

    Full text link
    This paper considers the problem of efficiently transmitting quantum states through a network. It has been known for some time that without additional assumptions it is impossible to achieve this task perfectly in general -- indeed, it is impossible even for the simple butterfly network. As additional resource we allow free classical communication between any pair of network nodes. It is shown that perfect quantum network coding is achievable in this model whenever classical network coding is possible over the same network when replacing all quantum capacities by classical capacities. More precisely, it is proved that perfect quantum network coding using free classical communication is possible over a network with kk source-target pairs if there exists a classical linear (or even vector linear) coding scheme over a finite ring. Our proof is constructive in that we give explicit quantum coding operations for each network node. This paper also gives an upper bound on the number of classical communication required in terms of kk, the maximal fan-in of any network node, and the size of the network.Comment: 12 pages, 2 figures, generalizes some of the results in arXiv:0902.1299 to the k-pair problem and codes over rings. Appeared in the Proceedings of the 36th International Colloquium on Automata, Languages and Programming (ICALP'09), LNCS 5555, pp. 622-633, 200

    Epic Human Failure on June 30, 2013

    Get PDF
    Nineteen Prescott Fire Department, Granite Mountain Hot Shot (GMHS) wildland firefighters and supervisors (WFF), perished on the June 2013 Yarnell Hill Fire (YHF) in Arizona. The firefighters left their Safety Zone during forecast, outflow winds, triggering explosive fire behavior in drought-stressed chaparral. Why would an experienced WFF Crew, leave ‘good black’ and travel downslope through a brush-filled chimney, contrary to their training and experience? An organized Serious Accident Investigation Team (SAIT) found, “… no indication of negligence, reckless actions, or violations of policy or protocol.” Despite this, many WFF professionals deemed the catastrophe, “… the final, fatal link, in a long chain of bad decisions with good outcomes.” This paper is a theoretical and realistic examination of plausible, faulty, human decisions with prior good outcomes; internal and external impacts, influencing the GMHS; and two explanations for this catastrophe: Individual Blame Logic and Organizational Function Logic, and proposed preventive mitigations
    corecore