957 research outputs found

    DNA adducts in fish following an oil spill exposure

    Get PDF
    On 12 December 1999, one third of the load of the Erika tanker, amounting to about 10,000 t crude oil flowed into sea waters close to the French Atlantic Coast. This oil contained polycyclic aromatic compounds (PAC) that are known to be genotoxic. Genotoxic effects induce DNA adducts formation, which can thus be used as pollution biomarkers. Here, we assessed the genotoxic impact of the “Erika” oil spill by DNA adducts detection in the liver of immature fishes (Solea solea) from four locations of the French Brittany coasts. Two months after the spill, a high amount of DNA adducts was found in samples from all locations, amounting to 92–290 DNA adduct per 109 nucleotides. Then total DNA adduct levels decreased to reach about 50 adducts per 109 nucleotides nine months after the spill. In vitro experiments using human cell cultures and fish liver microsomes evidence the genotoxicity of the Erika fuel. They also prove the formation of reactive species able to create DNA adducts. Furthermore, in vitro and in vivo DNA adducts fingerprints are similar, thus confirming that DNA adducts are a result of the oil spill

    Responses of Intertidal Bacterial Biofilm Communities to Increasing pCO2

    Get PDF
    12 months embargo applie

    Decreased Diversity and Abundance of Marine Invertebrates at CO2 Seeps in Warm-Temperate Japan

    Get PDF
    Japan has many coastal carbon dioxide seeps as it is one of the most volcanically active parts of the world. These shallow seeps do not have the spectacular aggregations of specialist fauna seen in deep-sea vent systems but they do have gradients in seawater carbonate chemistry that are useful as natural analogues of the effects of ocean acidification on marine biodiversity, ecosystem function and fisheries. Here, we compare macroinvertebrate diversity and abundance on rocky habitats at ambient (mean ≤ 410 µatm) and high (mean 971–1484 µatm) levels of seawater pCO2 in the warm-temperate region of Japan, avoiding areas with toxic sulphur or warm-water conditions.We show that although 70% of intertidal taxa and 40% of shallow subtidal taxa were able to tolerate the high CO2 conditions, there was a marked reduction in the abundance of corals, bivalves and gastropods in acidified conditions. A narrower range of filter feeders, grazers, detritivores, scavengers and carnivores were present at high CO2 resulting in a simplified coastal system that was unable to retain the high standing stocks of marine carbon biomass found in ambient conditions. It is clear that cuts in CO2 emissions would reduce the risks of climate change and ocean acidification impacts on marine biodiversity, shellfish production and biomass in the rocky coastal shores of this region

    Feedback mechanisms stabilise degraded turf algal systems at a CO2 seep site

    Get PDF
    AbstractHuman activities are rapidly changing the structure and function of coastal marine ecosystems. Large-scale replacement of kelp forests and coral reefs with turf algal mats is resulting in homogenous habitats that have less ecological and human value. Ocean acidification has strong potential to substantially favour turf algae growth, which led us to examine the mechanisms that stabilise turf algal states. Here we show that ocean acidification promotes turf algae over corals and macroalgae, mediating new habitat conditions that create stabilising feedback loops (altered physicochemical environment and microbial community, and an inhibition of recruitment) capable of locking turf systems in place. Such feedbacks help explain why degraded coastal habitats persist after being initially pushed past the tipping point by global and local anthropogenic stressors. An understanding of the mechanisms that stabilise degraded coastal habitats can be incorporated into adaptive management to better protect the contribution of coastal systems to human wellbeing.</jats:p

    Major loss of coralline algal diversity in response to ocean acidification

    Get PDF
    [Abstract] Calcified coralline algae are ecologically important in rocky habitats in the marine photic zone worldwide and there is growing concern that ocean acidification will severely impact them. Laboratory studies of these algae in simulated ocean acidification conditions have revealed wide variability in growth, photosynthesis and calcification responses, making it difficult to assess their future biodiversity, abundance and contribution to ecosystem function. Here, we apply molecular systematic tools to assess the impact of natural gradients in seawater carbonate chemistry on the biodiversity of coralline algae in the Mediterranean and the NW Pacific, link this to their evolutionary history and evaluate their potential future biodiversity and abundance. We found a decrease in the taxonomic diversity of coralline algae with increasing acidification with more than half of the species lost in high pCO2 conditions. Sporolithales is the oldest order (Lower Cretaceous) and diversified when ocean chemistry favoured low Mg calcite deposition; it is less diverse today and was the most sensitive to ocean acidification. Corallinales were also reduced in cover and diversity but several species survived at high pCO2; it is the most recent order of coralline algae and originated when ocean chemistry favoured aragonite and high Mg calcite deposition. The sharp decline in cover and thickness of coralline algal carbonate deposits at high pCO2 highlighted their lower fitness in response to ocean acidification. Reductions in CO2 emissions are needed to limit the risk of losing coralline algal diversity.Fieldwork in the Mediterranean was supported by the EU ‘Mediterranean Sea Acidification under a changing climate’ project (MedSeA; grant agreement 265103; MM, JH-S
    corecore